Inec

Harnessing the Power of RF GaN-on-Si Technology for Next Generation Connectivity Nadine Collaert

Overall trends in wireless communication

- Demand for higher capacity is very much alive
- Existing frequency bands <6GHz getting saturated
- New and higher frequency bands come with new challenges
- Operators seeking service diversification beyond data transmission

MobileExperts April 2023

Extreme data-rates and resolution at higher frequencies

COMMUNICATION PERSPECTIVE	FRI	"FR3"	FR2	"FR4"	"FR5"
TYPICAL RANGE	0.1-6 GHz	6-24 GHz	24-52 GHz	57-71 GHz	95-325 GHz
EXAMPLE CARRIER FREQUENCY	3.5 GHz	13 GHz	30 GHz	60 GHz	140 GHz
TYPICAL BANDWIDTH	100 MHz	200 MHz	400 MHz	2 GHz	10 GHz
WAVELENGTH	8.6 cm	3 cm	l cm	5 mm	2.1 mm
NUMBER OF ANTENNAS ON e.g. 1.5cm x 1.5cm	0	I	9	36	196
SENSING RESOLUTION RANGE/ANGULAR/SPEED	150cm / - / 4.3m/s	75cm / 115° / 1.5m/s	37.5cm / 38° / 0.5m/s	7.5cm / 19° / 0.25m/s	I.5cm / 8° / 0.1m/s

່ເກາຍເ

GaN-SiC shows much larger emissions than GaN-Si

B.Vanhouche et al, Electronics Goes Green 2024.

Emissions per substrate [kgCO₂eq/raw cm²]

ເກາຍc

5

From infrastructure to UE

INFRASTRUCTURE

■ High-power: ≥ 28V

HANDSETS (UE)

■ Low/medium power: ≤ 5V

Imec's RF GaN-Si technology platform

B. Parvais et al., IEDM 2020.

Device key features:

- Substrate: GaN on 200mm HR (111) Si
- HEMT and MISHEMT (SiN & high-k)
- InAIN, AIN and AIGaN barrier
- L_G down to 50nm
- Low resistive ohmic contacts <0.15 Ωmm
- S/D regrowth using MOCVD
- Multi-level Cu BEOL

GaN-Si devices can achieve similar performance as GaN-SiC

public

What do we need to enable $low V_{DD}$ E-mode devices?

Just example, not optimized stack or device

- Optimize active stack
- MISHEMT vs. HEMT
- Gate length scaling and introduction of S/D regrowth

From D-mode to E-mode

U. Peralagu et al., IEDM 2019.

Enabling S/D regrowth

S. Banerjee et al., ICNS 2024.

- R_{total} can be reduced to <0.1 Ωmm
- Challenges related to selectivity, intermixing and non-uniformity in composition

Main sources of dispersion

V. Putcha et al., IRPS 2020, 2021 & 2022. B. O'Sullivan et al., accepted to IRPS 2024.

- Following sources of dispersion have been identified:
 - Surface states: localized and reversible charge trapping in defects located near the corner of the gate.
 - Barrier defects
 - Deep level buffer defects
 - C_N defects (C-GaN layer) can get ionized

Charge movement in back barrier responsible for early breakdown

H.Yu et al., IEDM 2023.

Key take-aways

- RF GaN-Si shows very promising performance shown for low/medium power and highpower RF applications
- For handset applications, the search for a high performing and reliable E-mode device is still on
- Understanding the impact of non-idealities related to defects and thermal on RF FOM continues to be key
- Co-design of electrical, thermal, package, IC, antenna is key \Rightarrow availability of EDA tools
- RF STCO/DTCO methodology needed to guide the technology development

ເກາຍc

Acknowledgements

- The research team of the advanced RF IIAP program
- Imec's Core program partners
- The European Commission and Regional authorities for their support of European collaborative projects

Thank you

embracing a better life