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Power transistor technologies
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Silicon MOSFET:
From planar toward new structures
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A power MOSFET operates like a switch

Power MOSFET: key player in all applications handling power

Rbs(on) Impacts conduction losses

Main parameters impacting performance

Ros.0n (On-state resistance) [Q]

Qg (Total gate charge) [nC]
‘j_— Gate charge Qg impacts switching losses

Package
Breakdown voltage, BVDSS
Threshold voltage, Vth

dv/dt capability, output capacitance, more... g , .
Package impacts power density

Lys

life.augmented



Planar MOSFET

Conventional structure Rpson cOntribution Electric field
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RDSon = Rsource

*  Rpson is due mainly to the epi-region for high voltage MOSFETs

« The breakdown voltage is determined by the epitaxial layer (drift layer) doping concentration and its thickness

life.augmented



MOSFET evolution

Super-junction

! Drain

«  Thermal performance (Rth) « Better control of the dynamic behavior

 Improved performance like lower conduction and
switching loss

* Extended SOA - Significant Rth reduction due to very thin die
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Standard technology
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J E(x)dx

From planar to superjunction structure

Na= Charge density

es=permittivity

pIdI4-3

Comparison @ same BVdss

Higher
Drift doping layer Increasing dopant
concentration
R Related to Epi Lower
DSon layer Epi layer reduced
Electrical Field UETELLSE -

During the nregion  Increased by column structure

Benefits

* Higher current density
* Lower Zth
» Suitable for low thickness packages



Main features

Rps(on) * Area Power losses m Robustness

M5 M9

|

« Very low Rpgon PEr area

« Suitable for hard-switching
topologies

 Best choice for resonant
high power density systems
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Reducing switching energy
losses

Reducing switching time

Increasing switching
frequency

Reduced BVdss spread + Static dv/dt up to 120V/ns

<70V « Dynamic dv/dt up to 50V/ns

Reduced Vth spread <1V « Dynamic dv/dt up to 120V/ns
Higher reliability



Active area: cell structure comparison

Nitride Nitride
Nitride . Teos

Source Metal Source Metal

1
o

Single passivation Double passivation

" l Note: MDmesh™ Mx are the proprietary technologies of STMicroelectronics
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Source Metal
| SO EIE]

Triple passivation

MOSFET evolution

Passivation layers optimization

Nitride is an excellent and common passivation layer

Teos layer to reduce Nitride stress

Extra polymide layer (organic polymer that exhibits excellent
mechanical properties and electrical insulation) to reduce the
mechanical stress coming from BE processes




Application test and analysis

Power factor corrector (PFC) 1500W . Eoff

System Power Efficiency
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"l New technology maximizes system efficiency and thermal performances
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What is next for superjunction?

Multidrain approach Trench approach

e — e —— " e —— . e

—
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—— X — I — X — I — X —

From multi-epitaxy to
“dig & fill” approach

Colum by multi epy/implantation and diffusion Column by single epy etch and trench filling

* Reduced mask levels
» Single epitaxy

‘_ » No thermal process for column formation
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IGBT:
Evolution of a technology
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IGBT technology
i o

Gate
Emitter O O Gate Emitter Gate Emitter Gate )
Emitter Emitter
N+ N+ ]
I
P++ P+
N-

Body P+ Body P+ /s
N
" N N N Field Stop Layer NERAGEpIEe
N+ Buffer Layer N+ Buffer Layer Pt P+
= P+ Substrate = = P+ Substrate Collector Collector
CoIIector: : Collector Collector
» First IGBT structure * Thinner substrate » Vertical Gate * no tail current * Lower Vigga
+ Faster, but higher * Lower thermal * Optimized channel * Reduced switching * N+ layer removes
VEsat resistance, design losses JFET resistance
« Large E « Lower E4 « Lower Viggat « Decreased V gey « Carried stored
. : : layer fastens turn-
* Higher current * Thinner n-drift orzlswitchin abilit
density region 9 y

Lys

life.augmented



|GBT evolution

Gate Q Gate Q

I e e

Collector Planar PT Trench field stop

O Collector

Absence of JFET region
« Asymmetrical configuration Switching losses Low Low * Higher current density
Low conduction loss Conduction losses  High  Low Lower Veegat
e Less thermal Stablllty Slightly decrease with T increase with T
. Difficult Easy .

Paralleling Small positive T coefficient Positive T coefficient ¢ Implantatlon of FS and

* Not preferred for parallel _ Limited emitter
PR Short circuit rated : . Yes

* Low switching losses High gain + Better Vi g/Eo¢ CONtrol
* Mostly used in DC circuits i.e. Vcesat @10A 2.8V 1.6V * No need (- irradiation
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Trench layout strategy

Half dummy

Ic Isat full
Gate
Emitter Emitter Emitter
N+
Isat dummy or P+
1A 1A
L L : A A A
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I N- I 1 : N- N \
A A Yo "
\
N+ N+
P+ Substrate P+ Substrate
Colectro0 ¥4y T Collector

;I'&Tfh Full Active Dummy Cell Extra Dummy

Lower active cell density

4 (low, fast) 4 + 4 (medium, fast) * Low CiSS, COSS, Crss
8 +8 (medium, fast, 8+ 16 (medium, * Lower saturation current
8 8 dium, fast SC rated fast, st SEC
um (medium, fast) rated) as fa;:r;g . Improved TSC
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What's next in Trench Field Stop?

Hole Barrier Structure

Body

Hole Barrier

Emitter

HB IC
M HE

le+18|
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N Field Stop Layer

P+ Substrate lerld;
Collector ¢ ¢ ‘ é .
X {um|
* Process Option Benefit
* Additional Mask * lower Vcesat ~ 180mV
+ Additional Implant Phosphorus Warning
» New vertical profile with additional N-type layer that enhances the «  Vth lowering to be retuned
"l majority carriers and so improving the ON state losses «  BVces lowering
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Narrow Mesa |

Trench field-stop Narrow Mesa ll

110 ym -> 1200V

80 um -> 750V

70 ym -> 600V/650V

Technology features Benefits
* Very fine cell pitch * Lower Vcggat
* Trench potential » Higher current density:
engineered * Better Vegeai Eo trade-off

* Multiple deep field stop o Sreeier e
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Main features to improve Vg.,;and Turn off

Trench field-stop Narrow Mesa i

e —Emitier_ N-Drift Lower Thickness, Higher Resistivity:
E(V/um) E(V/um)
. tm > 55¢W >
(SN c =
g Breleee NN ey PG - to guarantee the same BV es;
3 > o s ) _
Pitch cell Pitch cell > - to improve Vcesat;
= 3
@ Q : ‘-
% ] Field Stop Design:
S
] 3
= N-driftlayer  _ | g - to improve turn-off in thinner wafer;
N- drift layer g Higher Res. 8 d
S = d <
84 < ? 3 a : .
B 3 ﬁ !’ ------- N E » Main other upgrades:
=
= I 1
1
I i i I . 0 . . . .
pocp N Feld stopy - Nitride + Polyimide Passivation
1 . . . .
I l - Backside Emitter Activation by Laser
I | y
1 .
w'. A A Annealing
Collector - Tune-up of the Emitter Efficiency on
CuFodsiop 1 y— Collector

T\ APPRR Backside for the right the trade-off;

Collector
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Static electrical improvements

Electrical field: Vertical profile Narrow Mesal li

Standard N+ Field STOP Deep N+ Field STOP £ !
s i
w 1
1
Deep N+ Field Stop :
. Collector backside o 1 0
’,f Collector backside o 1O
-~ 7} (7}
-t 1 =<
c 18
o I'm
18 [ .
Deep Field Stop - : S
4 Standard Field Stop by Multiple Implantation g ______ 8
= STD N+ Field Stop H
1T}
o

Electric field in high voltage withstanding

Deep Field Stop Layer; _ _ . .

«  To gradually block the electric field near the collector side; * Multiple field-stop profile shows better resolution of

« To reduce Ve peak at turn-off when “reducing the wafer field slope-down to have more robust devices
thickness”; » Higher efficiency voltage withstanding
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Dynamic electrical improvements
Turn OFF simulation

Standard field stop profile Multiple field stop profile
P

.- Reduced over voltage

Abrupt Ic fall due to carrier
wipe-out by very high bulk
electric field

. lc recombination tail

ORI EWFE HE S012 Byiiogen
c_tohzisr SHRE HE o212 =uionin

Multiple field stop design profile technique is used to control
the carrier’s lifetime improving performance by reducing
overvoltage during switching events
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Takeaways

Silicon technologies span an extensive market,
from industrial to automotive sectors

The wide product portfolio targets from low to high
power range and from low to high frequency
operation

New structures and concepts allow to take up new
challenges

i |

New technologies are one of the key contributors for
the green economy
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Our technology
starts with You
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