

GaN is widening the applications field in power electronics

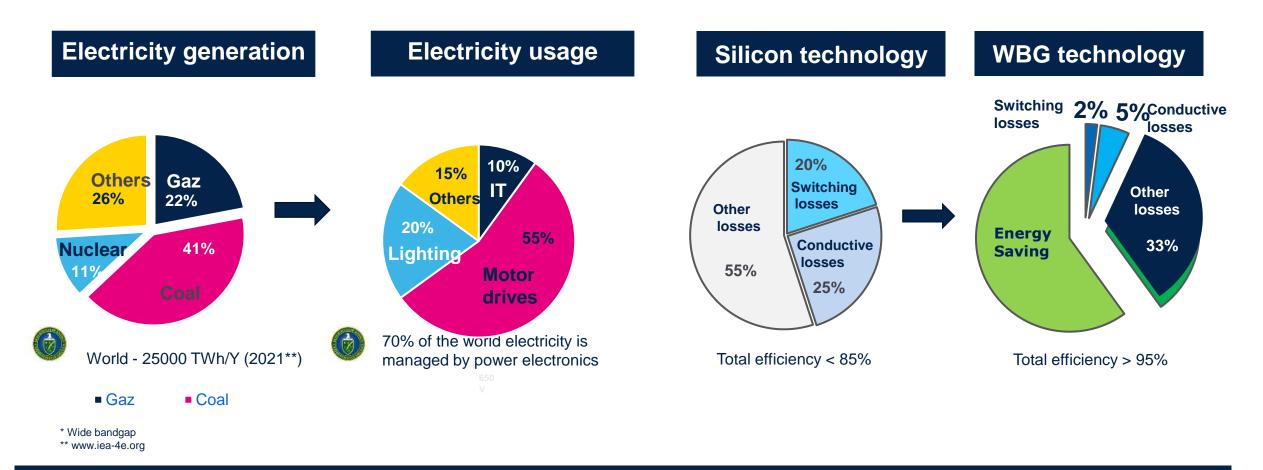
Eric Moreau Director R&D GaN STMicroelectronics

WBG

WBG

Energy transition

Resources are a common asset...


Reduce greenhouse gas emission

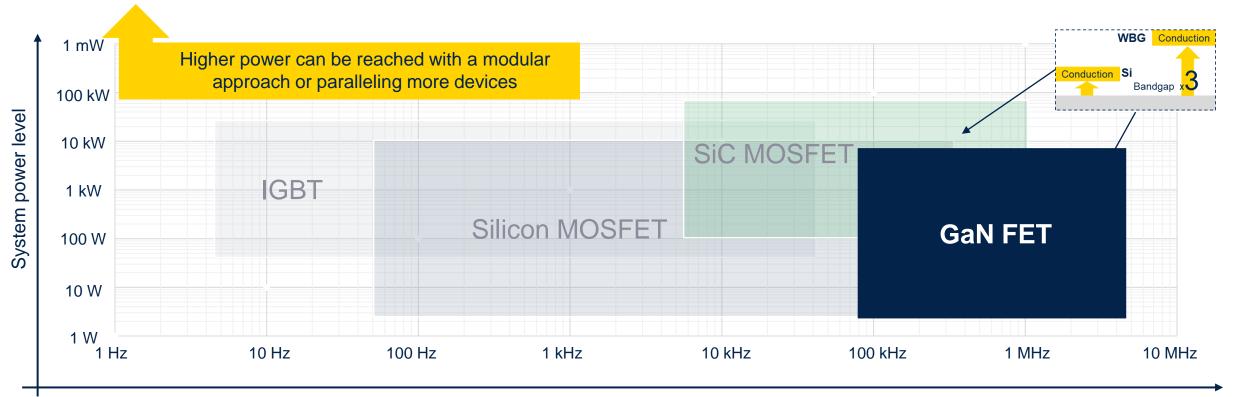
- Transport: automotive, space & aeronautics,
- **Industry**: pumps, motors, air-conditioning, multimodal energy approach
- **Digitalization**: massive data and « real time » calculation, data server, IA, ...
- → « Fossil » energy to be massively reduced

Optimize all usage

- Electrical power is also scarce
- From production to...
- Recycling & upcycling

Energy saving with WBG* deployment

3 to 7% global energy-saving estimated through deployment of WBG

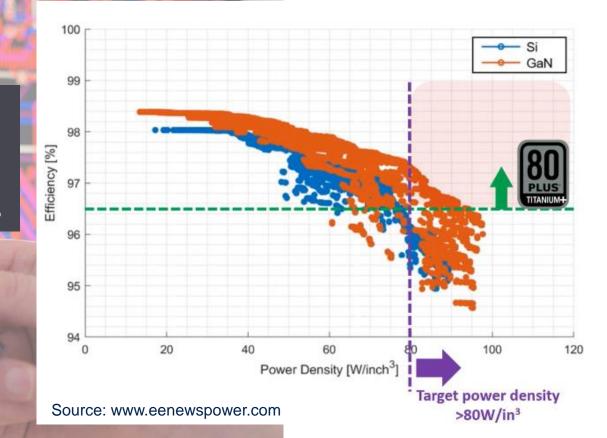

SiC and GaN semiconductors: enabling energy-efficient applications

Wide-bandgap semiconductors offer superior benefits and characteristics, thanks to:

Faster switching		
	Lower switching losses and higher efficiency	
Higher switching frequencies	Smaller passive components	New paradigm with WBG
Higher operating voltages wit low on-resistance	h Reduced currents and lower conduction losses	TCO*
Higher junction temperatures		Efficiency Density
Higher power densities	Reduced cooling requirement	
7	Miniaturization	4

Silicon, SiC, and GaN mapping as of today

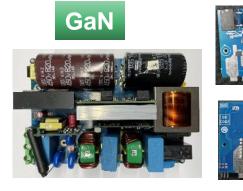
Silicon and wide bandgap materials are complementary



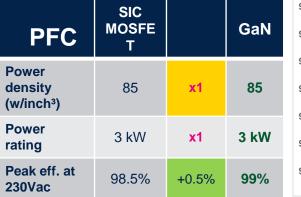
Operating frequency

GaN can help meet growing power density needs for AI datacenters

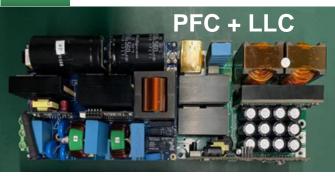
By 2027, annual worldwide AI-related electricity consumption may rise by 85 to 134 TWh based on the projected AI server production


Highest efficiency Smallest solutions Reduces energy needs Lowers CO2 emissions

SiC/GaN boost efficiency and power density for AI server/datacenter


3 kW totem pole PFC with SiC or GaN

ST Power GaN to boost efficiency (100 x 145 x 40 mm)



3 kW totem pole PFC + LLC with GaN

GaN

73.5 x 265 x 40 mm

98.40%	
98.20%	
98.00%	
97.80%	
97.60%	
97.40% U	/ LLC GaN
97.20%	
97.00%	
96.80%	
96.60%	500 1000 1500 - 4 2000 2558W ≤0550 khzo
0	500 1000 1500 atts ²⁰⁰⁰ 2 505W ≤0050 K£€2 0

PFC+LLC	Si MOSFET		GaN
Power density (w/inch³)	45	X1.5	89
Power rating	2 kW	X1.5	3 kW
Peak eff. at 230Vac	95.28%	+1.94 %	97.22%

Higher system integration for 5G telecom power

Enabling higher power density and higher efficiency

Smaller coverage due to higher frequency radio: to achieve high network speed and low latency

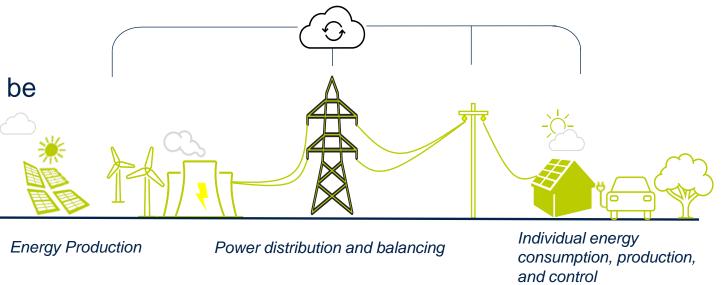
life.auamente

Higher power consumption in 5G usage: to fulfill high traffic density and connection density

Challenges for the grid

How to manage **peak loads that** are becoming increasingly **unpredictable**?

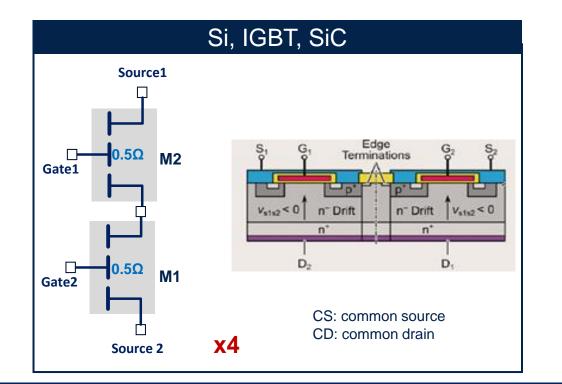
How to optimize investment in **energy transmission** upgrades?

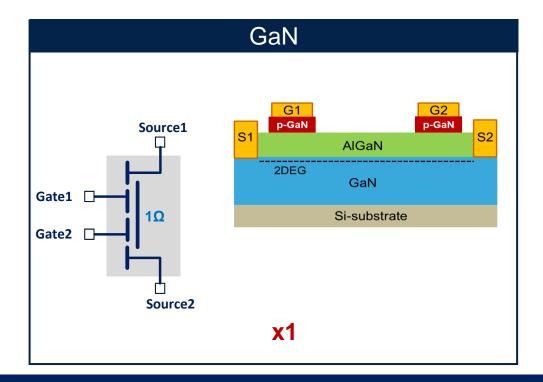


How to ensure a **reliable** supply to critical functions?

Secure & resilient power network

- Stationary energy storages: stabilize the network
- Easily deployable: EV batteries will be widely adopted
- Interconnected network from individual user / distribution / global and local production
- Immunity to cyber attack

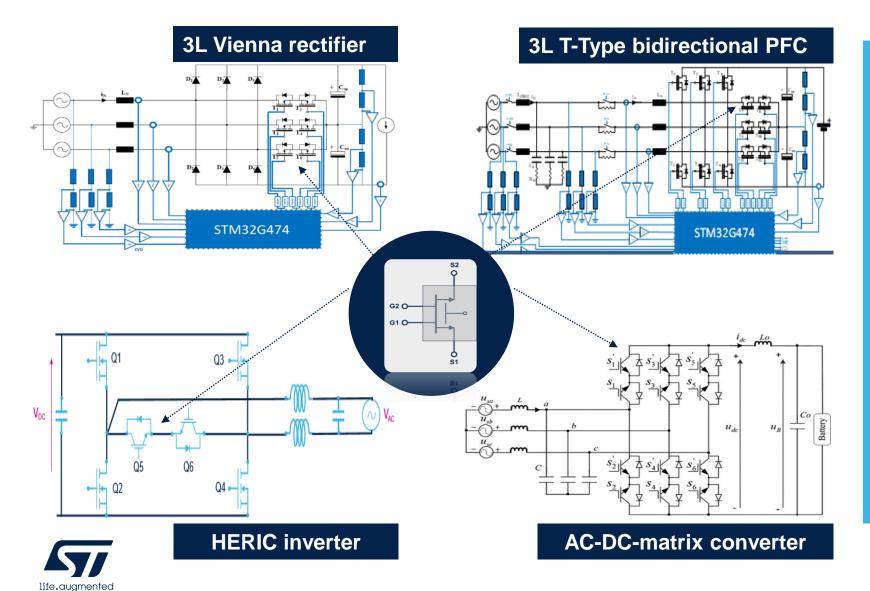

New applications require bidirectional power flow



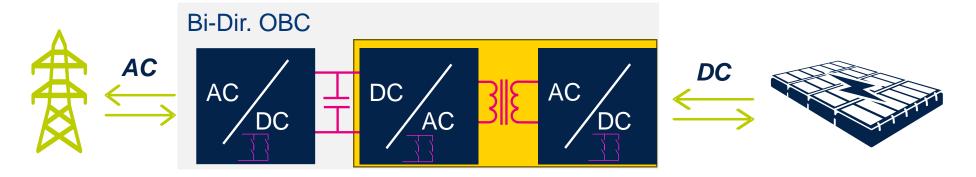
Bidirectional switch

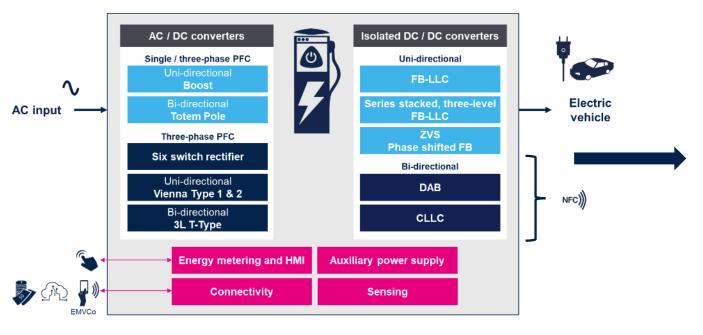
Bidirectional switches in CS or CD configuration with two separated drift regions

Bidirectional switches in CD configuration with shared drift region



Monolithic BDR switch is a key feature of GaN technology


Bidirectional GaN to replace back-to-back switches



57

- Components reduction
- Higher frequency
 operation due to GaN
- Size reduction of passive components
- Increased power density
- System's cost reduction

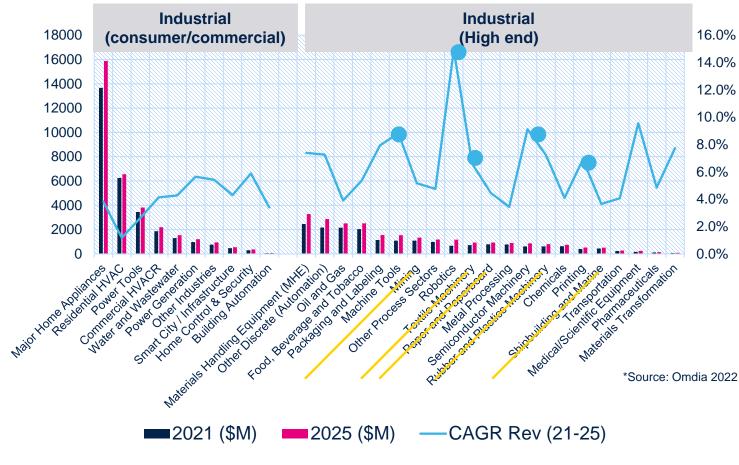
Bidirectional GaN – On-board charger

Bidirectional GaN to enable:

- Simplified system, less passive and power switch components
- Higher system robustness and reliability
- Higher power density for even more space
 and weight saving

Motor control landscape

53% of total global electricity production is consumed by electric motors


IEA Net Zero milestone All industrial electrical motor sales are best-in-class by 2035

20% gap to best-in-class technology today

Servo drives Top CAGR in high end industrial

Motor drive shipments (\$M) & CAGR 21-25 (%)*

Robotics CAGR 14.9%

Machine

tools

CAGR 8.8%

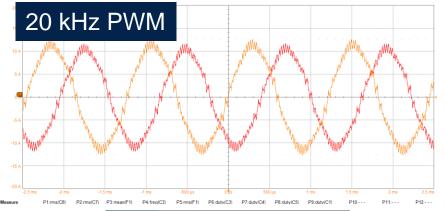
500 W high voltage motor drives based on GaN

GaN high voltage servo motor drive

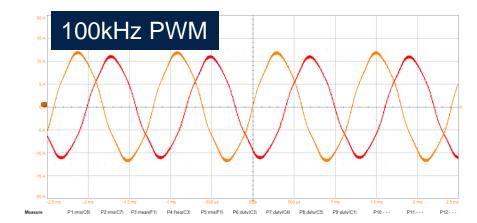
Key features:

- GaN ready solution for motion control
- 10 V dV/dt both hard-on and hard-off
- Overcurrent protection integrated in the gate driver
- FOC supported

Applications


- Designed for 230 V AC mains
- HEMT GaN 650 V, 65 mΩ typ R_{DSon}
 - Home appliances
 - Servo drives
 - High speed motors & tools
 - Miniaturized motors

Specifications:


- 500 W+ max output power without cooling fan
- RS485 for absolute position encoder
- SPI, I²C
- Hall sensor & encoder

Overall efficiency improvement increasing the PWM frequency

Peaks	Frequency	Amplitude
1	750 Hz	6.5713 A
2	40.75 kHz	269.4 mA
3	39.25 kHz	248.8 mA
4	3.76 kHz	248.1 mA
5	21.50 kHz	159.0 mA
6	18.50 kHz	135.4 mA
7	122 Hz	115.7 mA
8	17.00 kHz	113.4 mA
9	23.00 kHz	102.3 mA
10	1.46 kHz	98.8 mA

Peaks	Frequency	Amplitude	
1	750 Hz	6.6455 A	
2	3.75 kHz	251.8 mA	
3	199.24 kHz	85.2 mA	
4	5.25 kHz	74.2 mA	
5	98.50 kHz	44.4 mA	
6	101.49 kHz	37.8 mA	
7	103.00 kHz	31.1 mA	
8	97.00 kHz	28.6 mA	
9	196.24 kHz	11.4 mA	
10	49.24 kHz	7.7 mA	

	Si @20kHz	GaN @100kHz
Inverter efficiency	98.28%	98.68%
Motor efficiency		+4%
Overall efficiency		+4.12%

Not producing active torque

COP Test for HV fridge compressor

Compressor motor:

Phase resistance: 10Ω

Ls: 200 mH

Power devices	Fpwm (kHz)	Nominal speed [rpm]	Cooling capacity [W]	Input power [W]	СОР	COP increased
Leading solution STD8N60DM2	5	1200	65.793	34.681	1.897	
		3000	167.208	89.78	1.862	
		4500	232.425	145.847	1.594	
New ST GaN solution SGT120R65AL	5	1200	66.814	34.451	1.939	+2.2%
		3000	169.875	90.313	1.881	+1.0%
		4500	233.945	146.26	1.600	+0.3%
	8	1200	66.379	34.852	1.905	+0.4%
		3000	168.538	89.869	1.875	+0.6%
		4500	233.182	146.394	1.593	0

GaN technology adoption trends and opportunities

Penetration of existing markets

Improving value proposition

- Better figures of merits
- Lower system cost
- More system functionalities

From 15 to 240 W adapters

Tiny USB Power Delivery LED lighting

Expansion

Providing performances

- High reliability
- Robust (short circuit, overload, ...)
- Advanced packaging
- Die integration (PM, IPM)

Higher efficiency Lower BOM cost

PSU data Server

Hard switching applications

Challenging others

Substitution

by alternatives

- High Voltage (900 1200 V) •
- Vertical GaN .

Defence

Multicellular approach

- Fewer losses
- Less ripple torque
- Smaller filter

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

