

SILVACO

SiC technology optimisation using advanced modelling tools.

Ahmed Nejim R&D Projects Director

PE International - Brussels 16th April 2024

Problem statement: everything is coupled

- Many events are random but coupled.
- Prediction requires solving the governing equations.
- Large number of equations must be solved simultaneously.

Silvaco at a Glance

Challenges facing technology designers Pain and gain

SiC offers advantages but...

- New electrical and fabrication behaviors to understand and improve
- Understand role of crystallographic defects on charge transport

Complex 3D Device Geometries

- Need to maximise performance/power density
- Novel layouts to increase device density

High Demand for Power Devices

- Immense market opportunity with associated risks
- Higher volume applications (e.g., Electric Vehicles) require scaling of semiconductor technologies with high yield

Design tools

- New (enhanced) tools are needed- Higher precision, new transport models, etc...
- New SPICE models are needed

Fabrication: Victory Process

Virtual fabrication to optimize the next generation power devices

Activation Ratio vs Concentration for 4H-SiC at 1700C

Emulation of SiC Microtrench formation with time evolution

Trench gate MOS SiC device

Technology performance: Victory Device Victory Device for power device simulation needs

Anisotropic Mobility of SiC HexFET

SILVACO

System performance: UTMOST4 + SmartSpice

- No SiC based devices standard SPICE models yet.
- Use SPICE BSIM4-based Macromodel can produce reasonable fit to extract parameters for circuit and system design.

VictoryMesh Data from SiC_DMOS_RefFlow_0p19E16_VM.str

Optimisation flow Linking Fab to product design

Design space – Left to right DOE One candidate into many

• TCAD Simulation Flow for **Device Optimization is not one-shot procedure!**

Finding "the one" – Right to left

 Data from VDOE needs to be analyzed to find the relationship between multiple Process Input Variables (factors) and Device FOMs (key responses).

Victory Analytics – What's under the bonnet

Filtering and Input selections

Automatically filter outliers and find the dominant inputs

Machine Learning Model

Modeling the correlation between input to output based on neural network

Statistical/Sensitivity Analysis

- Sensitivity, Interaction, ANOVA, Trend, Overfitting etc.
- Monte Carlo Cp/Cpk analysis
 - Failure rate w.r.t. input parameters

Margin analysis

- Identify the control window of input parameters

SILVACO

Final thoughts

Most things in life are coupled

- How do we dis-entangle our design.

• SiC technology requires new design tools.

 New processing requirement, new charge transport models, new SPICE models, etc....

Linking the design elements into a seamless flow

- All modules are driven by one script

- Parametric model (the secret sauce) requires advanced algorithms

 ML is used to generate the final parametric model
- Expectations are inexorable. Development continues.

-Market expectations are fast changing. Design tools have to keep up.

Wisdom

How to "discover" available options.

How to "discover" optimal solution.

Is there insurance against wrong choices?

13

Silvaco produces advanced Power Technology design tools

Ahmed.Nejim@silvaco.com

Eu_sales@silvaco.com

