

Sample preparation and TEM imaging techniques for advanced power devices

Antonio Mani

April 2024

The world leader in serving science

Power device Inflections

SiC & GaN → higher performance → high defectivity → more analysis demands

EFA to PFA Workflow for Power Devices

Thermo Fisher

SCIENT

Power devices present unique failure analysis challenges

Power Device Failure Analysis

O Large structures, high volume FIB milling High defectivity GaN/SiC substrate **Photons** blocked by

Power devices present unique failure analysis challenges

Automated Delayering Power Devices

- Why delayering is necessary? Thick aluminum/Ti/TiN layers prevents failure detection (photon signatures, electrical probing)
- Why TFS' PFIB for delayering? Planarity is essential for delayered regions which require proprietary chemistry, applications expertise, and uniform PFIB beams

Large delayered windows (100 µm x 100 µm) only possible using Helios PFIB for power devices FA !

Why Helios 5 Hydra for Cross-Sectioning Power Devices?

Helios 5 Hydra **good**

Xenon PFIB: 51m

Argon PFIB: 34m

great

great

Thermo Fisher

Argon PFIB: 34m (No protective cap needed!)

- Regions of interest are large and require large volume removal
 - Thermo Fisher Scientific PFIBs have the highest volume removal rates
- Milling traditionally difficult materials such as SiC requires new technology for quick FA
 - Argon PFIB has the highest max current (4µA) and unique ability to mill dissimilar materials quickly

Why Helios 5 Hydra for Cross-Sectioning Power Devices?

Helios 5 Hydra

TPUT comparison for 120µm X-section:

Device	Ga⁺ (note*)	Xe+	Ar ⁺
GaN	500m	20m	13m
SiC**	1000m	51m	24m

- * Predicted
- ** Process results shown from previous slide

Xenon: 20m

Thermo Fisher

Argon ion is the winner: TEM images AlGaN/GaN

Helios 5 Hydra

Ar+: clean interface AlGaN/GaN, Ga+: AlGaN/GaN layers might react with gallium; Xe+: gallium-free

N+: might forms nitrides

TEM microprobe images acquired by Talos F200X at 200 kV Ceta 16M camera, FIB final ion energy at 1 keV

8 © 2024 Thermo Fisher Scientific – All Rights Reserved

FIB TEM sample preparation and Talos TEM images credit Shoji Sadayama and Hiromi Sekiguchi

Revolutionizing sample preparation quality with ion source technology

Introducing – Thermo Scientific[™] Helios 5 Hydra

- Xe, N, Ar, O ion species (<10min switching time)
- AutoTEM 5 & Auto Slice and View 4 automated applications software
- Multiple gas precursor choices
- High max FIB current (Ar: 4.3µA)
- High performance, industry standard Helios SEM

Delayering

- Uses Xe⁺ ion beam and proprietary chemistry
- Automated & uniform delayering

Cross-sectioning

 Ar⁺ offers 2X milling throughput increase vs Xe⁺ (80X vs Ga⁺) on most wideband gap materials

TEM sample prep

Thermo

 Ar⁺ offers sample preparation without Ga⁺ artifacts

Novel ion sources provide application flexibility and performance benefits

TEM Characterization & Analysis

TEM Characterization & Analysis

Thermo Fisher

TEM characterization and analysis is also required

STEM applications: Imaging

Simultaneous STEM imaging // STEM resolution = 0.14 nm

Thermo Fisher

SCIENTIFIC

Visualize contrast mechanisms with Panther STEM detection

STEM applications: Spectroscopy

Energy Dispersive X-Ray Spectroscopy (EDS) // Electron Energy Loss Spectroscopy (EELS)

Thermo Fisher

	Aperture	Frobe Current	Dweii Time
200 kV	70 µm (C2)	300 pA	4.5 ms
Image Size	Acquisition	Quantification	Filtering
256 x 256 px	6 min	at%	None

Simultaneous acquisition for heavy & light element detection with chemical bonding information

STEM applications: DPC/iDPC

DPC imaging provides access to in-plane electric fields via shifts in the center of the diffraction pattern

Talos F200E – the analytical TEM for power devices

Thermo Fis

Fast time to data, flexible TEM designed to optimize quality of results & ease of use

The TEM of record at leading semiconductor analytical labs

More than 650 Talos TEM systems installed worldwide

ThermoFisher

Conclusion

- Power devices with new materials introduce new failure analysis challenges
- Successful identification of complex defects may require multi-step and multi-tool workflows
- Ion species can provide application optimization and performance benefits
- A TEM is crucial and valuable for power semiconductor pathfinding and device development
- Thermo Fisher Scientific offers a total workflow solution for power device analysis

Thank you

Antonio Mani – antonio.mani@thermofisher.com

© 2024 Thermo Fisher Scientific – All Rights Reserved

Questions?

Antonio Mani – antonio.mani@thermofisher.com

© 2024 Thermo Fisher Scientific – All Rights Reserved