UCSB

Heterogeneous Integration of Photonic Devices on Silicon

<u>Jonathan Klamkin</u>*, Bei Shi, Yuan Liu, Chongxin Zhang, Diya Hu, Thomas Meissner Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106 USA *<u>klamkin@ucsb.edu</u>

Collaborators: David Harame, Gerald Leake, Joshua Herman (AIM Photonics); Rosalyn Koscica, Alec Skipper, John Bowers, Larry Coldren (UCSB); Brian Corbett, Fatih Atar, Ali Uzun (Tyndall); Renan Moreira, Gopi Gopalakrishnan (ULL)

PIC International 2024

UC SANTA BARBARA

- Semiconductor Lasers and PICs at UCSB
- UCSB Nanofabrication Facility
- Heterogeneous Integration of III-V Materials on Silicon
- Scaling and Commercialization Opportunities
- Summary and Outlook

Some Recent Laser PICs at UCSB

1550nm FMCW LiDAR PIC Transceiver

GaAs Optical Phased Array for Beam-steering Industrial Applications Widely Tunable 1030nm SGDBR Laser for Topographical LiDAR

UCSB

UCSB

The UCSB Nanofab

Jonathan Klamkin Director, UCSB Nanofab Electrical and Computer Engineering Department

University of California Santa Barbara

UCSB Nanofab Overview

UCSB

What?

The UCSB Nanofab is an advanced **nanofabrication** <u>user</u> facility.

- Open access: Users are internal (UCSB) and external (other universities, government, and industry)
- Facility houses ~\$60M of equipment

When?

In operation for more than 25 years

Why?

To support innovation

- User base is >500 annual users and ~50% of these users are from industry
- To or knowledge, this is the largest industrial base supported by any university nanofabrication facility in the United States.

How?

The UCSB Nanofab is supported by user fees and operates without loss.

UCSB Nanofab Impact at a Glance

UCSB Nanofab by the Numbers

- <u>State Impact</u>: UCSB Nanofab has been accessed by more than 200 California companies since 2006
- <u>National Impact</u>: 260 companies nationwide have accessed the facility, and of these, 195 are small companies
- 68 companies are local (Goleta and Santa Barbara)
 - 29 of these companies were started and led by UCSB faculty and/or graduates
- 92 academic institutions served nationally since 2006

Maps of UCSB Nanofab users

Summary of Capabilities: ≥100mm (up to 150mm)

- Full suite of advanced fabrication and characterization available for nanofabrication including: precision lithography, etching, deposition, integration and packaging
- Our facility is ≥100mm: All tools support 100mm, many support 150mm

UCSB

Sampling of Research Areas Leveraging UCSB Nanofab UCSB

Electronics, Photonics, MEMs, Microfluidics, Materials, Physics, Chemistry, Bio, Quantum

Example Industrial Users and Commercialization Success UCSB

- Imagers and range finders for defense and aerospace
- Processes developed at UCSB then transferred to production
- Founders are UCSB graduates
- 50 employees

SLDLASER

- Soraa and then SLD Laser develop LED and laser products for lighting, displays
- Founded by Nobel Laureate Shuji Nakamura, Steven DenBaars, James Raring (UCSB graduates and faculty)
- Acquired by Kyocera and >200 employees

Aeluma[™]

Autonomous Vehicles

faculty

Where GaN Resides in Electric Veh

Industrial

Automation and Machine vision

Scalable, cost-effective sensors for

automotive and industrial LiDAR

Founders are UCSB graduates and

Company went public in 2021

Google Al

- Quantum computing technology spun out of UCSB to Google
- Fabrication development at UCSB Nanofab

- Lasers and photonic integrated circuits for communications and sensing
- Processes developed at UCSB and transferred to foundry
- Founders are UCSB graduates
- Company acquired by Luminar

- GaN power electronics and RF devices
- Automotive market focus
- Founded by UCSB graduates and faculty
- Processes developed at UCSB and transferred to production
- Company went public in 2020

- Ultra-low noise crystalline mirrors for spectroscopy and sensing applications
- Processes developed at UCSB Nanofab
- Founded by UCSB graduate
- Acquired by Thorlabs

Birds Eye View of Economic Impact: Industrial Users

PhysioLogic Devices, Inc; GenXComm Inc; Ideal Power Inc; Spectron Laser Corp; LW Microsystems; Rodman Scientific; Technicolor HES; Pendar Technologies; AdTech Photonics; Nano Precision Medical; Nanoshift LLC; Lam Research Corporation; Ultima Genomics; Garmin International, Inc.; Lockheed Martin, Santa Barbara Focal Plane; Toyon Research Corporation; Aurrion (purchased by Juniper Networks); Laxmi Therapeutic Devices; Advanced Modular Systems; Aeonian Semiconductor Technology Corporation; Owl Biomedical Inc.; Sientra Inc; SurForce Corporation; Brad Herner; Momentum Optics, LLC; Facebook Technologies, LLC; SRI International; Parthian Energy; Terray Therapeutics; RLC Solutions; Magic Leap; Astrileux Corporation: Omniome, Inc.: Avar Labs: Cornina Technoloay Center: Nexus Photonics: Anasys instruments: Fluency Lighting: Numerical Design, Inc.: Applied Materials; ELR Systems LLC; Infinera; Juniper Networks; Laser Components DG Inc; Global Communication Semiconductors; Spectradyne LLC; Applied Nano; Zephyr Photonics; Sumitomo Electric Device Innovations USA; Skinfrared, LLC; Emcore Corporation; Nextinput; Illumitex; Nanohmics, Inc; Bandwidth 10, Inc; Lumenz; Advanced Device Sciences; AdvR; Promerus LLC; Drinksaavy; Infrared Vision Technology Corp; Photronix; RedShift Systems; TelAztec; Goodrich Corporation; 3DCD; Attollo Engineering, LLC; Advanced Photonix; Interlink Electronics; Johanson Technology, Inc; Nano Precision; Polyfet RF Devices; Rocketstar Robotics; Sensor Creations; Zinc Matrix Power; Cambridge Electronics Inc.; Imagine TF; Luxtera; Ostendo Technologies; Source Photonics; AdTech Optics; AlSthesis Products, Inc.; Xradia; Apic Corporation; Apple; Oxford Defense North Carolina LLC; LabSys LLC; NVE Corp.; Simax Lithography BV; Inveniux Corp; The Aerospace Corporation; Gamma Company; VoxtelNano; Seagate Technology; Royole Corporation; Optoplex Corporation; Silicon Clocks; Antora Energy; Modern Microsystems; Glenair; Nitres, Inc. (merger with CREE in 2000); Google Quantum (part of Google Inc, Mountain View); Autoliv; DuPont Displays; FLIR Commercial Systems; Mitsubishi Chemical Research & Innovation Center; Raytheon Infrared Operations; Raytheon Vision Systems; Agile Materials & Technologies; Calient Networks: Freedom Photonics, LLC: PacketPhotonics: Soraa Laser Diode, Inc: Soraa, Inc.: Transphorm: Acumen Scientific: CBrite: Diode Solutions, Inc.; iCRco, Inc.; Innovative Micro Technology; LaunchPoint; Santa Barbara Nanotech; Sensors in Motion; Solution Deposition Systems; Spectrafluidics; Space Exploration Technology; Advanced Integrated Photonics; Akoustis, Inc.; Replicell Inc.; Atom Nanoelectronics; SDC Technology; PrimeGen Biotech; Carbon Technology, Inc; Silicon Designs, Inc.; Bridgelux; Haylcyon Molecular; Advanced Nanostructures; Aneeve ; ruubix; Millibatt Inc.; HI LLC; Hughes Research Laboratories; Carbonics Inc.; Tribogenics; Dallas Quantum Devices; SRI International, Micro Science Engineering Laboratories; TE Connectivity, Silicon Valley Campus; Pacific Biosciences; Agility Communications (purchased by JDSU in 2006); KLA-Tencor Corporation; KLA-Tencor Inc; Grandis, Inc; Terrella Energy Systems Ltd.; ImagerLabs, Inc.; Protea Biosciences, Inc.; Applied Nanostructures, Inc; Cambrios Technologies; Fultec Semiconductor; Alcatel-Lucent Bell Labs; Lucent; QmagiQ; Coriant Advanced Technology, LLC; Crystalline Mirror Solutions LLC (purchased by THOR Labs 2020); Kajam Corporation; Opto Diode Corp; Meso Engineering, LLC; RF Nano; Commerce One; GE Global Research; Tivra Corporation; Lockheed Martin, Missiles & Fire Control; Partow Technologies LLC; Poole Ventura; Lockheed Martin Aerospace; HP Labs; Nano and Micro Technology Consultants; Robert Bosch LLC; Rhombus Power Inc.; Avery Dennison; Jet Propulsion Lab; Aonex Technologies; Etamota Corporation; SRU Corporation; ARMS; Crystalline Mirrors (Vixar); Phononic Devices; Northrop Grumman Corporation; Genapsys Inc; Triquint Semiconductor; Senspex; Cymer; Greenstar Micro Technologies; Lumedyne Technologies; Nanomedical Diagnostics; SensorMetrix; Cambrian Genomics; ColdLogix; LED Engin; Solar Junction Corporation; Complete Genomics Inc.; Meggitt Endevco; NexGenSemi; ATK Mission Research; Continental Advanced Lidar Solutions, Inc.: Innovative III-V Solutions: PiMEMS Inc.: Praevium Research: Advanced Scientific Concepts; Angstrom Science; Aptitude Medical Systems Inc; Asylum Research; CytomX; Epoxtal; Inlustra Technologies; Invenios; MEMS Precision Technology; Next Energy Technologies, Inc.; PLT; Resonant Wireless; Serry Enterprises; Solar3D; Superconductor Technologies, Inc.; Quintessent Inc; Ultra low-loss Technologies; Mirios Inc.; Precision Semiconductor; Intel; Collinear Corporation; Crossbar Inc.; Keysight Technologies; Soligie; Avio Scientific, LLC; Atomate Corporation; 3M; SemiSouth Laboratories; Molecular Electronics Corp; OEpic Semiconductors, Inc.; SAMCO Inc.; Xerical Sciences; Quintessence Photonics; Spectrolab; Teledyne Scientific & Imaging; Kavana Technology; Tyco Electronics; Physical Optics Corporation; Bruker Metrology; Veeco Metrology; Design West Technologies, Inc.; 3D-Sensir Inc (Acqubit); Aerius Photonics (purchased by FLIR in 2012); Arctic Silver; Laxense, Inc.; Cynvenio Biosystems; InterPhases Research; Uriel Solar; Advanced Research Corp; Olympic Precision; **Pseudolithic**, **Inc.**; Northrop Grumman Guidance & Electronics; **Aeluma**, **Inc.**; OptiComp;

UCSB

Silicon Photonics and Laser Integration

Silicon Photonics (SiPh) Background and Applications

Silicon Photonics Platform

*Source: IMEC's 56 Gb/s silicon photonics on 200 and 300 mm wafer

• SiPh leverages silicon on insulator (SOI) for waveguiding

- Platform includes actives (Si modulators, Ge photodetectors, thermal phase shifters, etc.) and passives (filters, splitters, loop mirros, edge couplers, grating couplers, etc.)
- Laser/gain integration complex and not monolithic

Applications and Market Forecast

2021-2027 SILICON PHOTONIC DIE FORECAST BY APPLICATION Source: Silicon Photonics 2022 Report, Yole Intelligence, 2022

*https://www.yolegroup.com/product/report/silicon-photonics-2022/

- SiPh already deployed widely in telecom and data center transceivers
- Emerging applications of SiPh include: co-packaged optics and edge computing, AI/ML, LiDAR, quantum photonics, photonic processors, consumer health, navigation and timing

UCSB

Laser/Gain Integration Approaches

UCSB

Hybrid Flip Chip

- \checkmark Mature and commercialized
- Limited scalability and requires precision alignment

Wafer or Chiplets Bonding

- \checkmark Small footprint and scalable
- Evolving into commercialization
- Inefficient usage of material

Micro-Transfer Printing (MTP)

 \checkmark Small footprint and scalable

- ✓ More efficient usage of material
- Not yet commercialized

Motivation for Direct Epitaxial Growth

Table 1. Comparison between different heterogeneous integration strategies on silicon *Wang et al., LPR, 2017

	Integration density	CMOS compatibility	Cost	Overall maturity
Heterogeneous bonding	Medium	Potentially back-end compatible	Medium	Mature
Transfer printing	High	Potentially back-end compatible	Low	R&D
Epitaxial growth	Very High	Potentially front-end compatible	Potentially very low	R&D

Challenges and Approaches for Heteroepitaxy on Si

UCSB

- Large lattice mismatch
- Large thermal mismatch
- Polarity mismatch

*Shi et al., Semicond., 2019

(c) Etched lines Thermal cracks

*Pan et al. J. Semicond., 2019

□ To eliminate APBs

- Use of nano V-grooved (001) Si
- GaP, GaAs on small miscut (001) Si via surface engineering
- Large miscut Si (4°-6°)

To reduce defects

- Dislocation filters: interlayers, strained layer superlattices (SLSs), QDs
- Thermal cycle annealing (TCA) or in-situ anneal
- Transition or compositionally graded buffer
- $\hfill\square$ To avoid cracking and minimize bowing
- Slower cooldown process
- Thick Si substrate
- Thinner buffer

* Li et al., APL, 2015

* Volz et al., JCG, 2011

Motivation for QDs for Lasers on Si

UCSB

Advantage of QDs over QWs

- Lower threshold, higher differential gain, higher temperature stability
- Lower linewidth enhancement factor, lower RIN
- Less sensitive to optical feedback
- P-modulation, N-modulation doping feasible

□ Additional advantage for QD lasers grown on Si

Higher tolerance to dislocations

Better reliability for QD laser on Si

Approaching QD laser on native GaAs

High Performance MOCVD QDs on Native Substrates and Micro-Transfer Print Integration

All-MOCVD QD Laser on GaAs Substrates

Light-current characteristics for various laser geometries

- High output power ~200 mW from single facet for >10 µm wide laser
- High wall plug efficiency ~32% for narrow width lasers

Thermal performance and spectral data

- High characteristic temperature (112K from 15-50°C, 60K from 50-90°C)
- No excited state lasing at maximum current injection level of 13*I_{th}

UCSB

Micro-Transfer Print Integration of QD Gain

UCSB

Micro-Transfer Print (MTP) Integration

G. Roelkens, et al., OFC 2019

- Group III-V components fabricated on native substrates with etch release layer to enable pick of coupons
- Butt coupling integration leveraged to enable high power performance and high coupling efficiency
- Developed sophisticated etched-facet process, optical facet coating, and coupon formation process

Example Printed Coupon in Recess

Recently fabricated Quantum Dot Gain for MTP

Micro-Transfer Print Integration of QD Gain

UCSB

etching for etched facet formation

Two-layer ARC (Ta_2O_5 and SiO_2) Iterate SiO_2 deposition and threshold current measurement to precisely control the ARC thickness

Lasers on Silicon by Direct Heteroepitaxy

III-Vs on Nano-V-Groove Patterned Si

- Double-step Si terraces created by (111) Si plane
- APBs can be completely eliminated, most TDs annihilated near V-grooves

- V-grooves formed by KOH wet etching
- Smooth and high-quality GaAs buffer

*Paladugu et al., Cryst. Growth Des. 12, 4696–4702 (2012) *Li et al., Appl. Phys. Lett. 106, 072105 (2015)

*Shi et al., Appl. Phys. Lett., 114, 172102 (2019)

Low Dislocation Density GaAs on V-Groove Si (GoVS)

- TCA and SLSs inserted as dislocation filters
- Threading dislocation density (TDD) analysis by electron channel contrast imaging (ECCI)
- Cross-sectional Scanning Transmission Electron Micrograph (STEM) to observe dislocation evolution
- Total GaAs buffer thickness can be lowered to 2.5 µm while maintaining defect density
- TDD in the range of $4 9 \times 10^6$ cm⁻²

UCSB

Multi-Layer MOCVD grown QDs on GoVS Template

GS: ground state ES: excited state

- Room temperature (RT) photoluminescence (PL) intensity and full width at half maximum (FWHM) identical for QDs on Si and on native GaAs, suggesting defect forgiving characteristics
- No QDs clustering

*Shi et al., Appl. Phys. Lett., 114, 172102 (2019)

All-MOCVD QD Laser Grown Directly on Si

- 20 µm broad area laser
 - Pulsed operation up to 100 mW per facet
- 4 µm narrow ridge laser
 - 25 mW per facet pulsed
 - 16 mW CW output

- Higher than expected series resistance → degraded CW performance due to self-heating
- Lasers still demonstrate reasonable light output and threshold

All-MOCVD QD Laser Grown Directly on Si

Selective Area Heteroepitaxy for Scaling and Process Integration

Selective Area Heteroepitaxy (SAH) on Silicon

Advantages

- III-V materials deposited only where needed
- High integration density possible
- Thermal stress relief avoids film cracking
- Reduction of dislocations by aspect ratio trapping (ART)
- Enables process integration and coupling to waveguides

Challenges

- Growth conditions differ from blanket deposition
- Challenges associated with maintaining selectivity and minimizing parasitic deposition (limitations on materials, ex. AlGaAs)
- Thickness uniformity with controlled faceted growth
- Crystalline defects and surface morphology

UCSB

SAH of GaAs on Flat-bottom Si Recess

- Recesses form by etching SiO₂ to expose/etch Si substrate
- Pattern fill factor of ~10% with recess widths varying from 7 to 15 μ m, lengths from 250 μ m to 1500 μ m
- Excellent selectivity across wafer and achieved APB-free GaAs surface for up to 15 µm wide trench

GaAs SAH on Nano V-groove Si Recess

- Smoother surface achieved for nano V-groove Si with oxide recess
- APB-free for nano V-grooved Si with any width (APB-free on flat-bottom Si only up to 15 µm wide)
- Lower overall dislocation density achieved with V-grooves in recess

*Shi et al., IPR, 2022

SAH on Flat-bottom vs. Nano V-groove Si

- 5x TCA between 735°C and 355°C, and InGaAs/GaAs strained layer superlattices (SLSs) inserted
- Evident dislocation termination and annihilation by SLSs in SAH, surface defect density on the order of 1e7 cm⁻²

Microdisk Lasers (MDLs) on Flat-bottom vs. Nano V-groove Si**UCSB**

- *Shi et al., IPR, 2022
- Dislocations in MDLs on flat-bottom Si partially due to inferior QW/InGaP interfaces
- Fewer dislocations inside disk regions when growing on nano V-grooved Si
- QW as gain elements since QW is more sensitive to dislocations

MDL Performance Comparison

UCSB

- Note that the shorter peak wavelength is due to thinner QW and lower Indium composition (wider recess on nano V-Si)
- Lower density of dislocations leads to higher PL intensity and lower statistical lasing thresholds (6.5X lower)

Multi-layer QDs Stacking

UCSB

- Capable of stacking 5 layers of QDs with enhanced PL emission, by reducing QD deposition amount
- PL center wavelength near 1310 nm with narrow FWHM (32 meV)
- Clear ground state and excited state emission separated by nearly 100 nm

Zero-Gap and Coupling Simulations

- Zero gap between III-V and SiN/Si waveguide to facilitate coupling
- Simulate the effect of faceting on coupling efficiency
- Compare to coupling with gap (filled with SiO₂)

FDTD Simulation (side view)

•

1.45

1.21

0.965

0.724

0.483

0.242

0.00133

UCSB

- Zero gap minimized butt coupling loss from laser to waveguide
- Faceted growth within 2 µm from end face
- ~70% coupling efficiency possible with 2 µm faceting at interface
- Etched facet might be necessary to avoid non-uniform QWs and InGaP claddings

35

Comparing MOCVD and MBE for Scaling and Process Integration

Hybrid MOCVD+MBE

UCSB

Many working quantum dot lasers

Bowers, et al., UCSB

Low coupling efficiency due to large gap between III-V and SiN

- MOCVD required for initial growth on standard silicon and in recess
- MBE growth not selective therefore CMP process required to remove unwanted material
- MBE quantum dot growth process is mature but large gap between III-V and Si/SiN waveguide leads to high coupling loss
- MOCVD has higher growth rate and selective/conformal growth for scaling and process integration

Hybrid (MO)CVD+MBE and All MOCVD

UCSB

CVD Germanium-on-Silicon followed by **MBE** QDs

* M. Liao *et al* 2018 *Semicond. Sci. Technol.* **33** 123002

MOCVD laser GaAs-on-Silicon followed by **MOCVD** QDs

38

*Y. Wan et al., IEEE J. Sel. Topics in Quantum Electron., vol. 26, no. 2, (2020)

Scaling and Commercialization Opportunities

At a Glance

Aeluma™

Aeluma, Inc. (OTCQB: ALMU) A transformative semiconductor chip company High Performance Semiconductors that Scale

Headquarters: Goleta/Santa Barbara, California

<u>Markets</u>: Automotive LiDAR, Mobile, AR/VR, Communication, Defense & Aerospace, Al

Team: ~15 people

<u>Expertise</u>: Compound semiconductors, heteroepitaxy, photonic integrated circuits, silicon photonics, lasers, detectors, volume manufacturing

Intellectual Property: ~25 issued and pending patents, trade secrets

The Aeluma Approach to Sensor Manufacturing

High-Performance Technology with Large-Diameter Substrate Manufacturing

Aelun

InGaAs: Indium Gallium Arsenide; InP: Indium Phosphide; LiDAR: Light detection and ranging; FPA: Focal plane array Source of image: https://www.flir.com/support/products/swir-ingaas-fpa/; Note: Outcomes cannot be guaranteed.

Aeluma's Technology Breakthrough

Scalable, Cost-Effective Manufacturing Enabled by Cutting-Edge Intellectual Property

Conventional manufacturing of InGaAs photodetector arrays

Non-scalable, manual and low throughput

16X wafer area

Moving from 3-inch to 12-inch wafers

Aeluma high-performance InGaAs photodetector arrays with Silicon manufacturing

- ✓ Highly automated and ability to produce many arrays per wafer
- 10X lower manufacturing cost for mass market applications

Summary of Product/Technology Offerings Detector Arrays

- Low dark current photodetector arrays manufactured with large-diameter substrate platform
- Pixel and array size customizable
- Typical array sizes: 128 X 32, 256 X 128, 640 X 512
- Delivered as PDA chips or with ROICs
- FPA assembly available
- Small test arrays (ex. 8 X 8) available for eval./qual.

Examples shown are 256 X 128 arrays

Aelu

Applicable markets include automotive, mobile, AR/VR, defense & aerospace, industrial and logistics, and security

© Aeluma, Inc. All Rights Reserved.

Summary of Product/Technology Offerings

Large-Area InGaAs Detectors

High sensitivity, low dark current and high speed detectors for SWIR and XSWIR

- Typical Photosensitive Diameter (D): 0.25 to 5.0mm
- Typical Operating Wavelength (λ): 0.95 to 1.55 μ m)
- Device: PIN, APD or SPAD
- Format: Bare die or mounted in TO package

 \succ Х

Applicable markets include automotive, mobile, AR/VR, defense & aerospace, industrial and logistics, gas

sensing, instrumentation, and security

Bare Die

TO Package

Summary of Product/Technology Offerings

Aeluma's proprietary heterogeneous integration platform integrates highperformance compound semiconductors (ex. GaAs, InP, GaSb) on large-diameter substrates including up to 12-inch Silicon.

This technology has the potential to scale, reduce cost, and increase yield, all of which are critical for emerging and mass-market applications.

Summary of Offerings

High Quality Templates

High-quality GaAs, InP, and GaSb templates grown on up to 12-inch Silicon substrates for scaling highperformance technologies to larger wafer sizes.

Monolithic Integration by Selective Growth

Selective growth enables CMOS process integration and may be applied to Silicon Photonics, III-V electronics integrated with Silicon CMOS, integration of InGaAs detectors with CMOS read-out ICs, and more.

Large-Scale Detectors for

PDA Wafer

Manufacturing detectors on the same substrate size as read-out ICs enables waferscale integration to improve performance, increase functionality, and reduce cost.

Aelur

ROIC Wafer

Lasers for Silicon Photonics

Wafer-Scale Integration

Integration of quantum dot lasers and other group III-V active devices in Silicon Photonics

Applicable markets include automotive, mobile, AR/VR, defense & aerospace, quantum computing, AI, and communication

Silicon Photonics and Laser Integration

12-inch Silicon Photonics Wafer with Aeluma Materials

Aeluma's Technology Can Enable Process Integration

Aeluma, Inc. Enters into Agreement with RFSUNY to Support AIM Photonics

Silicon Photonics Applications

High-Performance Computing and Data Centers

AI and Photonic Computing

Lasers for Silicon Photonics

Integration of quantum dot lasers and other group III-V active devices in Silicon Photonics

Aiming to Service a Broad Market

High-Performance Semiconductors for Sensing and Communications

Aeluma

Summary and Outlook on QDs and Heterogeneous Integration

- Hybrid approach (MOCVD+MBE) interim solution for demonstration and low volumes
- (MO)CVD is required for growth on standard CMOS Si substrates and for process integration (i.e. selective growth)
- All-MOCVD approach preferred for scaling and process integration

Perspectives on MOCVD and Quantum Dot Lasers

- ~15 years ago: "You cannot grow VCSELs by MOCVD, you have to use MBE"
- Today: All large-volume commercial VCSELs grown by MOCVD
- There are many other examples of transition to MOCVD for commercialization
 - III-V HEMTs, Visible LEDs/Lasers, etc.
- Recently: "You cannot grow Quantum Dots by MOCVD, you have to use MBE"
- Prediction: "As demand for Quantum Dot lasers and integration with Silicon Photonics grows, all commercial Quantum Dot lasers will be grown by MOCVD"

MOCVD Quantum Dot Lasers

UCSB

Acknowledgements: Support from DARPA (LUMOS), SRC (CogniSense), CHIPS Act (MEC)