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A SILICON PHOTONICS ECOSYSTEM
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Product

* SiPh-Enabled switch
¢ CPU w/SiPh
¢ GPU w/SiPh




MOTIVATING EXAMPLE:
Grating coupler to efficiently scatter light off chip

<<$0.10/Gbps

Integrated optics

guided mode

Typical Insertion Loss =~ —1.0dB (80% Efficiency)



WHAT IS (PHOTONIC) INVERSE DESIGN?

— Desired output

Known input —> What should go here?

inverse design:
which design results in best match with desired output?

J

optimization problem:
— find optimal design among all possible designs



HOW TO PERFORM (PHOTONIC) INVERSE DESIGN?

e Step 1a: problem specification

" Sio, " FOM: mode matching at 8" scattering angle 5um I

it inpur [ ] |
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e Step 1b: set up simulation tool

Electromagnetic Figure of merit
field profiles (FOM)

Permittivity

Design variables profile

« Finite difference solvers, etc.
» Data-driven machine learning models
 Self-supervised physics-informed machine learning models |

[ oy |

Simulated Electric Field
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HOW TO PERFORM (PHOTONIC) INVERSE DESIGN?

e Step 2: optimize design variables fo maximize figure of merit

Permittivity Electromagnetic Figure of merit

DEsigh VEEbIes profile field profiles (FOM)

Update design variables to further improve FOM:
* Gradient-based methods (via adjoint method)
* Bayesian optimization

Genetic algorithms

Reinforcement learning



INVERSE DESIGN OF GRATING COUPLERS

E—

A. Michaels et al., Opt. Express., 2018.
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GRADIENT-BASED METHODS FOR PHOTONIC INVERSE DESIGN

e Inverse design is high-dimensional, non-convex optimization problem
o Exhaustive search is strictly impossible f
« FOM has local minima and saddle points

e FOM is unknown and fairly expensive to simulate for individual design

e Gradient-based techniques aim to roll down the hill
e Need access to gradient of FOM
— Can use adjoint state method, needs single additional simulation
e May get stuck in local optimum
—Can try to initiate descent from several points

Local Minimum

Global Minimum

—Can try to leverage physics intuition to start in right basin

« Not very sampling efficient
— Particularly problematic if (gradient) evaluations are expensive

» Nevertheless, de facto standard method with many state-of-the-art results!

E— | e



ADJOINT STATE METHOD FOR PHOTONIC INVERSE DESIGN

e Advanced example: polarization-splitting grating coupler. Results in PSGC of 1.2dB peak loss

Materials and Sources Simulated Electric Field Magnitude (FDTD)
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e Gradient-based methods tend to be slow:
« 20 days on 144 CPU processes: 8 days for simulations, 12 days for gradient calculations

P. Sun et al,, "Adjoint optimization of polarization-splitting grating couplers,” Opt. Express 31, 4884-4898 (2023).



Hooten, S., et al., CLEO (2023)
https://arxiv.org/pdf/2311.05646.pdf

SPEEDING UP ADJOINT STATE METHOD github.com/smhooten/emopt

CPU — GPU: at least factor two improvement Leverage automatic differentiation
e Open-source: EMopt, fdtd-z, ... « Adjoint state method also needs gradient of permittivity
o Several commercial solvers: Lumerical, Tidy3d, ... w.r.t. design variables
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BEYOND STANDARD ELECTROMAGNETIC SOLVERS

e Can one circumvent expensive simulations altogether by leveraging machine learning model?
« Data-driven methods are less favorable in this context

o Self-supervised, physics-informed models:
- Often lack in reliability and struggle out-of-distribution @ Fourier Neural Operator

- ExpenSIVe Tralnlng, but fast inference ®_> Fourier layer 1}— Fourier layer 2—> @ ® @ —»|Fourier layerT—>

—Train once, use forever

—Equally easy for non-linear PDEs (b) 7 — Fourier layer
Physics-Informed Neural Network @/‘Q
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NON-GRADIENT BASED METHODS FOR INVERSE DESIGN

» To make each (expensive) simulation count, we need an optimal way to choose the query design
« should balance exploitation of known information and exploration of unknown regions in design space

e Bayesian optimization

o Leverages surrogate model that is iteratively updated to approximate FOM given current simulated designs

e Is global optimization method

e Deep Ensemble Bayesian Optimization (DEBO)
« Use ensemble of deep neural networks as surrogate model
« Can directly include additional information, e.g.,
—compositeness
—gradient information
—equations of motion via physics-informed models
—other inductive biases
o Doesn’t suffer from out-of-distribution or reliability issues

: Kim, S., et al., 2021. arXiv preprint arXiv:2104.11667.

Hooten, S., et al. 2023.
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CIRCUIT DESIGN

Motivating example: photonic tensor core

e Universal matrix-vector multiplication can be achieved via
meshes of Mach-Zehnder interferometers (Reck, Clements, etc.)

e Specific machine learning task doesn’t need universal mesh

circuit design:
which sequence of meshes results in best performance of the
ML task, while also, for example, minimizing the footprint?

J

optimization problem:
find optimal circuit among all possible circuits

e Search space contains both continuous and discrete components.
o Borrow techniques from Neural Architecture Search (NAS) literature!
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THANK YOU

wolfger.peelaers@hpe.com
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