

A PERSPECTIVE ON RECENT TRENDS IN INVERSE DESIGN OF INTEGRATED PHOTONIC DEVICES AND CIRCUITS

Wolfger Peelaers, Sean Hooten, Thomas Van Vaerenbergh, Peng Sun, Jared Hulme, Marco Fiorentino, Ray Beausoleil Large Scale Integrated Photonics, Hewlett Packard Labs

Special thanks to: S. Hooten, A. Michaels, T. Van Vaerenbergh, and M. Fiorentino for valuable resource material

April 17, 2024 – PIC International

A SILICON PHOTONICS ECOSYSTEM

MOTIVATING EXAMPLE:

Grating coupler to efficiently scatter light off chip

Typical Insertion Loss ≈ -1.0 dB (80% Efficiency)

WHAT IS (PHOTONIC) INVERSE DESIGN? **Desired** output E_z What should go here? Known input

inverse design:

which design results in best match with desired output?

find optimal design among all possible designs

HOW TO PERFORM (PHOTONIC) INVERSE DESIGN?

• **Step 1a**: problem specification

• **Step 1b**: set up simulation tool

- Finite difference solvers, etc.
- Data-driven machine learning models
- Self-supervised physics-informed machine learning models

HOW TO PERFORM (PHOTONIC) INVERSE DESIGN?

• Step 2: optimize design variables to maximize figure of merit

Update design variables to further improve FOM:

- Gradient-based methods (via adjoint method)
- Bayesian optimization
- Genetic algorithms
- Reinforcement learning
- ..

INVERSE DESIGN OF GRATING COUPLERS

GRADIENT-BASED METHODS FOR PHOTONIC INVERSE DESIGN

- Inverse design is high-dimensional, non-convex optimization problem
 - Exhaustive search is strictly impossible
 - FOM has local minima and saddle points
- FOM is unknown and fairly expensive to simulate for individual design
- Gradient-based techniques aim to roll down the hill
 - Need access to gradient of FOM
 - Can use adjoint state method, needs single additional simulation
 - May get stuck in *local* optimum
 - Can try to initiate descent from several points
 - Can try to leverage physics intuition to start in right basin
 - Not very sampling efficient
 - Particularly problematic if (gradient) evaluations are expensive
- Nevertheless, de facto standard method with many state-of-the-art results!

ADJOINT STATE METHOD FOR PHOTONIC INVERSE DESIGN

• Advanced example: polarization-splitting grating coupler. Results in PSGC of 1.2dB peak loss

- Gradient-based methods tend to be slow:
 - 20 days on 144 CPU processes: 8 days for simulations, 12 days for gradient calculations

Hooten, S., et al., CLEO (2023) https://arxiv.org/pdf/2311.05646.pdf github.com/smhooten/emopt

CPU \rightarrow **GPU**: at least factor two improvement

- Open-source: EMopt, fdtd-z, ...
- Several commercial solvers: Lumerical, Tidy3d, ...

Leverage automatic differentiation

- Adjoint state method also needs gradient of permittivity w.r.t. design variables
- Slow to compute using finite differences
- Describe permittivity profile using differentiable shapes

BEYOND STANDARD ELECTROMAGNETIC SOLVERS

- Can one circumvent expensive simulations altogether by leveraging machine learning model?
 - Data-driven methods are less favorable in this context
 - Self-supervised, physics-informed models:
 - Often lack in reliability and struggle out-of-distribution
 - Expensive training, but fast inference
 - Train once, use forever
 - Equally easy for non-linear PDEs

Physics-Informed Neural Network

Physics-Informed Neural Operator

Raissi, M., et al., 2019. *Journal of Computational physics*, 378 Li, Z., et al., ICLR 2021.

Li, Z., et al., 2021. ACM/JMS Journal of Data Science.

NON-GRADIENT BASED METHODS FOR INVERSE DESIGN

- To make each (expensive) simulation count, we need an optimal way to choose the query design
 - should balance exploitation of known information and exploration of unknown regions in design space
- Bayesian optimization
 - Leverages surrogate model that is iteratively updated to approximate FOM given current simulated designs
 - Is global optimization method
- Deep Ensemble Bayesian Optimization (DEBO)
 - Use ensemble of deep neural networks as surrogate model
 - Can directly include additional information, e.g.,
 - compositeness
 - gradient information
 - equations of motion via physics-informed models
 - other inductive biases
 - Doesn't suffer from out-of-distribution or reliability issues

Total Function Evaluations

-0.48

Grating Coupler Optimization

Kim, S., et al., 2021. *arXiv preprint arXiv:2104.11667*. Hooten, S., et al. 2023.

CIRCUIT DESIGN

Motivating example: photonic tensor core

- Universal matrix-vector multiplication can be achieved via meshes of Mach-Zehnder interferometers (Reck, Clements, etc.)
- Specific machine learning task doesn't need universal mesh

circuit design:

which sequence of meshes results in best performance of the ML task, while also, for example, minimizing the footprint?

optimization problem:

find optimal circuit among all possible circuits

- Search space contains both continuous and discrete components.
 - Borrow techniques from Neural Architecture Search (NAS) literature!

THANK YOU

wolfger.peelaers@hpe.com