Electrooptic Glass Substrates for Photonic Packaging

Dr. Andreas Matiss Sr. Manager Technology Corning Optical Communication

April 16th, 2024

Acknowledgements

Robert A. Bellman Lars Brusberg Jeffrey S. Clark Robin M. Force Jason R. Grenier Betsy J. Johnson Young-gon Kim Aramais R. Zakharian

BoKyung Kong Daniel W. Levesque Jürgen Matthies Chad C. Terwilliger JungHyun Noh Seong-ho Seok Lucas W. Yeary

Optoelectronic Glass Substrate for Co-Packaged Optics

Glass Substrate with Through Glass Vias

- Thermal stable \rightarrow Reduced mechanical stress
- Excellent surface flatness → Low-loss fine-pitch electrical lines and micro-bumps

Glass Waveguides

- Optical fan-out for high density PIC I/O's
- Mechanically de-coupled PIC and fiber interfaces

Flip-chip Attached PICs

 Low-loss, broadband, high-density optical I/O's by evanescent coupling to glass waveguides

Fiber Connector

- Low-profile 16 fiber connector
- Edge coupled

Value Proposition: Glass Enables Highest Density I/O

Integrated optical waveguides in glass packaging substrates enable highest density optical I/O's up to multiple 10's Tbps/mm PIC shoreline density

PIC = Photonic Integrated Circuit RDL = Redistribution Layer

CORNING

General - Corning (L4)

Package Development w/ Ion-Exchange Glass Waveguides

- Thermal ion exchange process between salt melt (ion source) and alkali-containing glass to increase the refractive index in the glass
- Successfully fabricated low-loss (<0.08 dB/cm) singlemode IOX waveguides

Fine-Pitch RDL on Glass for Routing and Flip-Chip Bonding

10/10µm Cu line/space inside cavity for RDL

- 1 RDL (developing 3+ for cavity)
- Glass thickness<600µm
- Cavity depth ~30..140µm
- TGV: opening width ~100μm, Waist ~45μm, Min pitch 150μm

75mm x 75mm glass substrate with U-shaped cavities, and TGV arrays with 250 µm pitch

Cu test pattern inside cavity with bonding pads

Evanescent Coupling Between IOX and PIC Waveguides

Overcome active alignment and enable pick-and-place assembly of photonic integrated circuit (PIC) on glass

Looking through glass substrate with waveguides at PIC with fiducials

- Measured loss includes SMF to IOX glass edge coupling (0.2 dB) + IOX glass to PIC evanescent coupling
- Lowest and highest loss curves are plotted in dark and light colors for different polarizations
- Measured temperature dependence between 10-60°C \rightarrow ~0.2 dB increase in polarization dependent loss

Standard MPO or Low-profile Fiber-to-Glass Waveguide Connector for Solder Reflow

0.42 dB average connector loss with 5N spring force

- Passive pin assembly on glass
- Physical contact, MT-ferrule with 16 fibers and 250µm pitch
- 0.3dB additional loss for mode matching
- MPO adapter or low-profile connector (W=7.5mm, H=4.4 mm, L=13 mm)
- No plastic receptacle on the glass for solder reflow

Experimental data for connector with 5N spring

102.4 Tb/s Test Vehicle

Targeting the major package requirements

- <u>Optical connectivity:</u> end-face fiber coupling, IOX waveguide routing, PIC evanescent coupling
- <u>Electrical connectivity</u>: high speed PIC to ASIC, Power/GND delivery
- <u>Packaging</u>: Cavity RDL fabrication, TGVs, PIC assembly

102.4 Tb/s includes 16 optical modules at 6.4 Tb/s - Current focus: one-sided demo

- 4 vs 16 PICs
- Footprint: 50 mm x 50 mm

Optical Shoreline Density at Glass Edge

- Connector pitch 8mm
- 16 Fibers per connector
- Single core fibers

Format	Bit Rate (Gbps)	Wavelength	Duplex Capacity (Gbps)	Total Capacity (Gbps)	Shoreline Density (Gbps/mm)
DR	100	1	800	1.600	200
DR	200	1	1.600	3.200	400
FR	100	4	3.200	6.400	800
FR	200	4	6.400	12.800	1.600
DWDM	32	8	2.048	4.096	512
DWDM	64	8	4.096	8.192	1.024
DWDM	128	8	8.192	16.384	2.048

- Optical fan-in / fan-out substrate
- Narrow waveguide pitch below 50um possible
 - Significant increase of PIC shoreline bandwidth density

Α

- Glass enables integrated electrical and optical connectivity on one packaging platform
- Low loss evanescent coupling demonstrated with potential to go well below 1dB coupling loss from glass waveguide to SiN waveguide
- Detachable optical connector for up to 2Tbps/mm bandwidth density at the edge of the packaging substrate.
- Using glass as optical fan-out element will allow significant increase of shoreline density at PIC edge