Bidirectional GaN power ICs open up new possibilities in off-grid applications

Alfred Hesener Senior Director Industrial&Consumer 17.04.2024

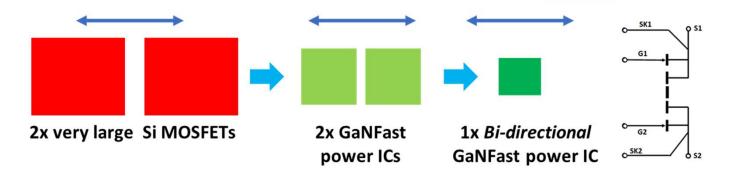
PE INTERNATIONAL CONFERENCE

Navitas

Energy • **Efficiency** • **Sustainability**

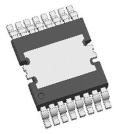
GàNEas

Power I



- Bidirectional power switches in GaN technology
- Technology comparison
- New topologies:
 - Vienna rectifier
 - Current-source inverter
 - Solid state circuit breaker
- Summary

World's First Bi-Directional GaNFast[™] Power IC


Navitas

4x smaller than SiC Bidirectional FET, 3x smaller than two unidirectional GaN, 9x smaller than Silicon

- Traditional power semis (MOSFETS, IGBTS) are uni-directional (one-way conduction or isolation)
- Several topologies need bidirectional power flow control complex and difficult to control
- Bi-directional GaNFast power ICs are the smallest, most efficient, lowest system cost solution
 - Optimized for fast switching, AC voltage applications
 - Enable 'previously-impractical' topologies
 - Integrated circuitry ensures reliability
- Applications: Power supplies, Industrial, Solar, Energy storage, Motor drives
- Mass production target 2024

Bi-Directional GaNFast[™] Power IC Navitas GaN power ICs unlock the next level of performance

Feature
Very low switching losses
Very high switching frequency possible
Precise switch timing with low latency and dead time
High voltage ratings

Integrated substrate clamp

Impact

Reduce losses by >20% over SiC, >50% over Si

Very small / planar magnetic components

Improved control loop performance, low EMI

High robustness against transient overvoltages

Reduced dynamic onresistance drift

Benefit

Small / no heatsink, easier thermal design, higher reliability

Reduced size and system cost

Smaller EMI filter → system cost improvement

Lower field failure rate, surge robustness

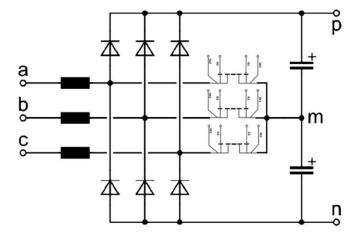
Repeatable performance

Copyright Navitas Semiconductor, 2023

- Bidirectional power switches in GaN technology
- Technology comparison
- New topologies:
 - Vienna rectifier
 - Current-source inverter
 - Solid state circuit breaker
- Summary

Extended technology comparison *

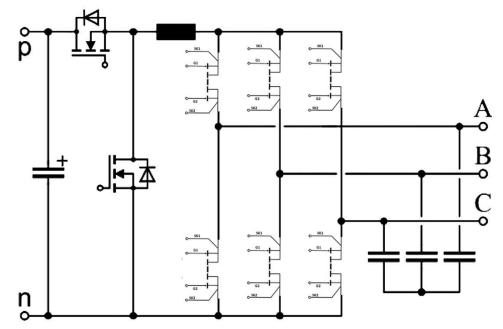
Switch configuration	Description	Chip area / Size / Complexity	Number of components	ON-state voltage drop	Switching loss	Switching frequency	Gate control complexity
	Diode bridge + asymmetric IGBT	Very high	5	3.5V [2 diodes + 1 IGBT]	High	16kHz	Low
	Asymmetric IGBT + freewheeling diodes	Very high	4	2.5V [1 diode + 1 IGBT]	High	16kHz	Low
	Back-to-back reverse- blocking IGBTs	High	2	2.0V [1 symmetric IGBT]	Very high	8kHz	Medium
	Si power MOSFETs + JBS diodes	High	4	1.25V [1 diode + 1 MOSFET]	Low	60kHz	Low
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ n \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$	Back-to-back SiC power MOSFETs + antiparallel and series JBS diodes	Very high	6	1.25V [1 diode + 1 MOSFET]	Low	100kHz	Medium
	Four-terminal SiC monolithic BiDFET	Medium	1	0.5V [1 BiDFET]	Low	100kHz+	Medium
	Monolithic bidirectional GaN power IC	Lowest	1	0.5V [1 Bidirectional GaN power IC]	Lowest	500kHz+	Medium
right Navitas Semiconductor, 2023 * See "Baliga et.al.: The BiDFET Device and Its Impact on Converters", IEEE Power Electronics Magazine, March 2023 Rev-2023-09-15							


- Bidirectional power switches in GaN technology
- Technology comparison
- New topologies:
 - Vienna rectifier
 - Current-source inverter
 - Solid state circuit breaker
- Summary

Bi-Directional GaNFast™ Power IC in Vienna Converter

Navitas

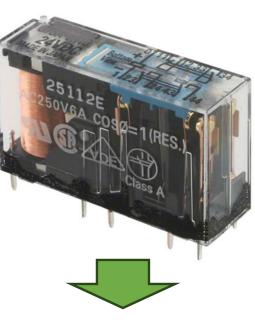
- Input: Universal AC, output: 800V (+/- 400 V)
- Switching frequency: 100 kHz
- Using GaNFast[™] Bidirectional GaN in TOLT
- Very high efficiency and low complexity



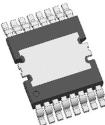
Bi-Directional GaNFast™ Power IC in Current Source Inverter

🔊 Navitas

- Inherently sinusoidal output
- Very high switching frequency possible through further reduction of the switching losses
- Bidirectional power flow
- Potential to optimize motor size and cost, through lower inductance

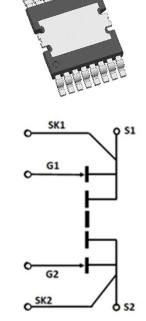

Bi-Directional GaNFast™ Power IC in circuit breakers

 Replacing electromechanical switches with a solid-state switch


Significant advantages for critical applications:

- No arcing
- No degradation from vibration or shock
- Much smaller size and weight
- Fast response time
- No moving parts \rightarrow better reliability, switch cycles
- Handles AC or DC
- Low power remote control

Navitas



- Bidirectional power switches in GaN technology
- Technology comparison
- New topologies:
 - Vienna rectifier
 - Current-source inverter
 - Solid state circuit breaker
- Summary

Bi-Directional GaNFast™ Power IC : Summary

- Bi-directional GaNFast[™] power ICs are the smallest, most efficient, lowest system cost solution
 - Optimized for fast switching, AC voltage applications
 - Enable 'previously-impractical' topologies
 - Integrated circuitry ensures reliability

Navitas

Navitas' GaNFast[™] Bidirectional offers convincing solutions to enable new topologies for better performance and system cost savings

Discover more at

navitassemi.com

Navitas Electrify Our World™

