CENTER OF EXPERTISE

ADVANCED X-RAY TOPOGRAPHY

INDUSTRY READY DETECTION OF TSDs AND BPDs IN SIC WAFERS

C. Reimann¹, C. Kranert², S. Kobayashi³, Y. Ueji³, K. Shimamoto³, K. Omote³, A. Vigliante¹

¹Rigaku Europe SE, Neu-Isenburg, Germany
²Fraunhofer IISB, Erlangen, Germany
³Rigaku Corp, Tokyo, Japan

Rigaku

000000

accelerated representation map animated

Center of Expertise for X-Ray-Topography

founded in 2021

- joint undertaking of **Rigaku Corporation** and **Fraunhofer IISB** to develop:
 - X-ray topography tools
 - measurement procedures
- defect recognition and counting algorithms
 for production, quality assurance and R&D application
- supporting from first demo measurements, tool training etc.

Taking away the power from silicon...

- ... means leaving behind dislocation-free material!
- Dislocations can have an impact on device yield and reliability
- Every substrate is different

Industry requires semiconductor ready, reliable, high-throughput, non-destructive substrate characterization

Defects in silicon carbide

Threading Screw Dislocations (TSD)

- Increase leakage current of diodes
- Detrimental to gate oxide lifetime
- Can result in growth pits causing problems during device processing

Basal Plane Dislocations (BPD)

- Result in stacking faults under stress
- Reduce lifetime of
 - MOSFETs
 - Bipolar devices

211111 000-9455WEO Lansanioni **TSD Detection** X 0

TSD detection – "Old" vs. "New" language

- TSD detection using chemical etching highly challenging
 - TED and TSD cannot be distinguished for standard KOH etching
 - Other alternative approaches come with different problems
- Use of (0008) reflex with XRTmicron
 - **TSD/TMD** appear as small, dark spots
 - Almost no other features visible (on today's production grade SiC)
 - Simple to classify and count → enables reliable and robust dislocation counting
 - Measurement reproducibility: 3%
 - Tool2Tool: 5% (depending on samples could be 10%)

TSD detection Reproducibility

- Measurement of three neighboring wafers on both sides (Si-face and C-face)
- Differences between individual wafers can be resolved
- Differences between front and back side of wafer can be resolved
- From trend between data points, the distance between wafers can be estimated!

TSD detection Reproducibility

- Full wafer measurement of many wafers from two SiC crystals
- Plot of TSD density over wafer number
- Monotonic TSD density variation is easily reproduced
- Even small differences (1%) between wafers can be resolved

TSD detection Measurement times

- Industrial application:
 - Perfect accuracy usually not required
 - High throughput essential
- TSD detection requires minimum image quality → Throughput on full wafer scale is limited (A)
- Use of local measurement to increase throughput
 - Grid measurement (B) → only very small error at 3x throughput
 - Stripe measurement (C) → critically increased error at 4x throughput
 - Use of radial weighted average reduces error and narrowness of the distribution

TSD detection SEMI Standard M91

SEMI M91 - Test Method for Determination of Threading Screw Dislocation Density in 4H-SIC by X-Ray Topography

Volume(s): Materials Language: English Type: Single Standards Download (.pdf) SEMI Standards Copyright Policy/License Agreements

Member Price: \$113.00

Non-Member Price: \$150.00

Revision

READY FOR INDUSTRY!

BPD Quantification

0

DOC VESIVE

100000

.....

XXXX

BPD quantification

Principle

- BPDs give only weak contrast in reflection geometry due to in-plane Burgers vector
 - → usually measured by XRT in transmission geometry
- Which properties to investigate?
 - BPD count?
 - BPD length?
- Volumetric density (cm/cm³) differs strongly (factor of 14 at 4° offcut) from etch pit density (cm⁻²)

BPD quantification – "Noodle salad challenge" Principle

- Linear appearance of BPD pose challenges to counting
 - Detection of start and end of dislocation already challenging for low densities
 - At higher densities \rightarrow strong overlapping hinders differentiation between dislocations
 - Discrete counting (as for TSD) not possible

high density

low

BPD quantification – "Noodle salad challenge" Principle

- Use of a calibrated approach to obtain results consistent to KOH results
 - Divide topogram into tiles (typically 1x1mm²)
 - Analyze topogram to obtain a numeric value
 - Etch wafer by KOH and obtain etch pit density for the same tiles
 - Calibration curve obtained by correlating both data sets

BPD quantification

Verification

- Calibration tests using wafers from 5+ leading manufacturers
- Very good agreement with the same set of calibration data for all manufacturers
 - Independent of material properties (except thickness and offcut angle)
 - Recalibration / system check can be done based on XRT measurements, i.e., without additional KOH etching

Kranert et al., poster presentation @ECSCRM 2021

BPD quantification – "The faster the better"

FastBPD approach using HyPix detector

- New version of XRTmicron available on request
 - Measurement times of ~5min per 150mm wafer
 - Identical results as for standard measurement
 - Insensitive to lattice curvature → wafers that fail on standard system can be measured
 - Very simple and fast alignment
 - For sufficiently tight specs → no alignment at all
 - Measurement reproducibility 5%
 - Tool2Tool: 5% or 50/cm²

BPD detection SEMI Standard M93

SEMI M93 - Test Method for Quantifying Basal Plane Dislocation Density in 4H-SiC by X-Ray Diffraction Topography/Imaging

Member Price: \$138.00

Non-Member Price: \$180.00

Volume(s): Materials

Language: English

Type: Single Standards Download (.pdf)

SEMI Standards Copyright Policy/License Agreements

READY FOR INDUSTRY!

XRT Toolbox - Defect analytics software

- Experience from defect analysis condensed into XRT Toolbox
- Very fast defect analysis
 (<5 min for a full 150mm wafer scan)
- Currently built for analysis of SiC wafers
- Can be adapted also for an analysis of defects in other materials
- Implemented evaluation routines fully compatible to SEMI Standards

READY FOR INDUSTRY!

Summary

- XRT has become a mature technique ready for application in industry
 - High accuracy, high reproducibility
 - SEMI-standardized procedures
 - High throughput
 - **Further developments under progress!**
 - Please be invited for further discussion!

Center of Expertise for X-Ray-Topography

ご清聴ありがとうございました。

Thank you for your kind attention!

0

Get in contact:

Dr.-Ing. Christian Reimann

Rigaku Europe SE

Director Business Development christian.reimann@rigaku.com Dr. Assunta Vigliante **Rigaku Europe SE** Director Semiconductor Solutions assunta.vigliante@rigaku.com

0

Dr. Christian Kranert

Fraunhofer IISB Group Manager Crystal- and Wafer Metrology christian.kranert@iisb.fraunhofer.de

1.1.1