

Capital Efficient Systems for SiC Manufacturing Expansion and R&D

Corporate Overview

- Founded in 1989; Privately Held
- 60+ Employees
 - Corporate HQ San Jose, CA
 - Manufacturing, Design & Software Engineering, Customer
 - Support, Applications, Sales
 - Engineering Center Vietnam
 - Customer Support (Asia), Design & Software Engineering
- Over 1200 systems installed globally
- All systems manufacture in San Jose, CA
- Low Cost-Of Ownership Products & Services
- Systems individually optimized to meet specific customer specifications
 - Footprint, layout, software functions, new processes, special
 - hardware....
- In-House R&D, Machine Shop, Software System Development for Fast-Turn Service & Enhancements

Process Systems Platforms

- Global customer base
 - R&D − Low Volume Production → HVM
 - Si, GaAs, InP, GaN, Glass, SiC, LiNbO₃
 - IC, Discretes, RF, MEMS, LED, PIC ...
- Customer focus
 - Optimize systems based on customer need
 - Optimized HW & SW
 - Continually developing new applications and
 - technologies & functionality

2 inch wafers to 300 mm wafers Wafer on Tape Frame and HOOP Wafer Fab and Packaging

<u>P8000 Linear</u> <u>Platform</u>

C&D Applications

 PR Coat & Develop Positive PR Negative PR DUV PMMA 25 nm Node 	 Planarization (SynchroSpin[™]) Positive PR Polyimide BCB SOG Thick Films, 150 µm 	Metal Lift-Off • Positive PR / Negative PR • DUV • 25 nm Node • HVM Configurations • PR Stripping Post Etch	Multilayer Application Single or Process Spectrum Applications
 • Thick PR, 150 μm • Optical Edge Bead Removal • HVM Configurations 	 Packaging - Wafer Interposer Fabrication Si, 100 μm Glass Molded wafer 	 Spray Coating 4:1 Aspect Ratios Combine with planarization Combine with std coating 	
 and Pillar Thick Resist Develop Dry Film Develop Thermal Process Alloy for Compound Semi 	 KDL Temporary Bonding Coater Multiple HPOs & Coaters Coating & Cleaning Life Science – Sensor Manufacturing 	Frame Track • HOOP Process • Frame Processing • Dice Protect Layer Coat • Saw, Laser, Plasma	

- Low temp RTP w/o lamps
- LiNbO₃, GaAs Compounds

- Peptide Synthesis
- DNA Synthesis

- Post Dice Clean/Strip
- HVM Configurations

ons

ecific

Investments Sampling

- Green Field
 - Infineon Kulim \$5.5B
 - ST Microelectronics & Sanan \$3.2B
 - STM Catania €5B
 - STM GF €7.5B
 - University of Arkansas \$18M
- Brown Field
 - Bosch & TSI \$1.5B
 - X-Fab \$200M
 - Vishay Newport \$177M
 - Clas-SiC £24M
 - Microchip \$880M
 - Rohm \$1.9B
 - OnSemi \$300M
 - SK Powertech \$111M

Capital Efficiency

- Low Cost of Ownership
 - Pricing
 - Availability
 - Reliability
- Enhancement of Spending, enabling additional purchases
- Extendibility, Future Proofing Equipment Selection
 - Enhance-ability
- Multiple Applications on a single platform
- Different system platforms for different needs
- Legacy support

- Capital Budget
 - Extending Budget Application
 - Short lead times
- Operating Budget
 - Low schedule downtime, < 5 hrs. per month
 - Low unscheduled downtime, < 5 hrs. per month
 - Low MTTR, < 4 hrs.'.
 - Low consumable and PM parts cost, < \$10,000 per year

Example 1 – Budget ~ \$6M

RFQ

- 1 Department
- 2x Coater/Developer Production
- 1x Coater/Developer R&D

Final

- 3 Departments
- 2x Coater/Developer Production
- 1x Coater/Developer R&D
- 1x Coater Special Application
- 1x Scrubber
- 5x Microscope Loader

Benefits

- Price
- Short lead time, less than 6 months
- Process Performance
- Low COO
- Multiple applications with single platform
- One stop shopping

Example 2 – R&D to Light production

C & D Semiconductor

- Fleet of 5 P9000 (3x Coat & Develop, 1x Lift-off, 1x Special Apps)
- Advantage Multiple applications in single system
- Advantage Reliability, repeatability, cost, common platform (spares & operations simplification)
- Substrates: SiC, Quartz, GaAs, GaSb
 - Transparent & Opaque
 - 100 mm, 150 mm, 200 mm simultaneously Size scale up
- Two coaters with 8 resist for each system
 - Different photoresist/coating materials on each system
- Two developers positive and negative

Example 3 – Wafer Thinning: Temporary Bonding, Grinding

Fleet Installation – 3+

- HVM environment
 - SiC and GaAs
- Optical and thermal debonding processes
- 10+ Years
- Proven reliability
 - MTBF > 400 hrs.
 - Scheduled down time < 5 hrs per month
 - Unscheduled downtime < 5 hrs per month
- Proven Repeatability
 - High stress wafers stringent testing
 - Coating performance
- Transition from Linear to P9000
 - Increase capacity with smaller foot print
 - Retire older equipment

Configuration

- 2 Coating Modules
 - 4 Dispense Nozzles
 - 9.5 mm, 6.3 mm, 4.75 mm, 3.2 mm
 - EBR Nozzle, 3.2 mm
- 12 Hot Plate Ovens (HPO)
- 3 Chill Plates
- 2 Indexers
- 1 Centering Device
- 1 Chemical Cabinet

Example 4 - Legacy

- Adding new high viscosity dispense
 - Requirement: new pump, new dispense line new dispense fixtures
 - Original supplier: >\$10,000 and 6 month lead time for new dispense line & fixtures
 - C&D: \$1,500 with 3 week lead time
- Expanding foundry
 - Upgrade from legacy linear systems
 - 5x legacy linear systems replaced with 2x P9000
 - Increased productivity
 - Reduced floor space, reduced operating cost

Summary

- Capital Efficiency
 - Extending Capital Budget
 - More capability for the same budget
 - Equal or better performance
 - Optimized systems
 - Future proofing
 - Reduced expense cost for future operation
 - Extendibility of equipment lifetime
 - Upgrades
 - Expansion purchases
- Operational Efficiency
 - High availability
 - Low scheduled downtime
 - Low unscheduled downtime, high MTBF and MTBA
 - Low consumable and spare parts requirements