

Semilab Semiconductor Physics Laboratory Co. Ltd.

www.semilab.com

Challenges and solutions in new generation SiC metrology

Eszter Najbauer – Application Scientist

Semilab solutions for the SiC process flow

About Semilab group

SiC Power MOSFET Process Related Metrology

Grand and a state of the state		SIC epi SIC substrate ZIC enpitate ZIC edi Dic substrate ZIC edi		Implantation FET Drift Layer (n) Sic (n') PUL PAAR (0) PUL PUL PUL PUL PUL PUL PUL PUL PUL PUL
PSI-2200	EIR-2201 EIR-2300	CnCV-230	SPL LumiSiC	PMR-C
Substrate defects	Epitaxial thickness	Doping profiles	Defect inspection	Implant Dose, Temperature
	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		20 mm 20 mm 4 thirds that the term 5453 00 9617.72	

Substrate defect inspection

PSI-2200

PSI-2200: Stress field imaging

150 mm diameter SiC substrate wafers.

Defects with sixfold symmetry

Crystal defect monitoring

Fully automated platform, with automatic loading for one selected sample size: 150 mm or 200 mm.

- Single load port, or optional dual load port. ٠
- Low backside contact sample holder. •
- Option: zero edge exclusion depending on ٠ configuration

Epi thickness measurement

EIR-2201, 2202, 2300

FTIR – EIR-2300

EIR-2300 for fully automated SiC fabs

- Versatile loadport configuration
 - 2 x SMIF or 2 x OC; OHT or AGV; manual
- High-throughput dual-arm robot
- Compact footprint, back-to-back or to-the-wall placement
- EIR-2201, EIR-2202
 - 2 x manual loadports or 1 x SMIF
 - EIR-2201: AGV option, EIR-2202: OHT, AGV options
- Gen2 metrology head with improved lifetime
- Advanced SW features:
 - Wafer sorting capability
 - Tool status performance check report
 - Improved SiC interferogram analysis

• Versatile applications:

- Thickness measurement: Si epi, SiC epi, SOI, SiGe...
- SiC buffer layer, Si transition zone, higher dopant concentrations
- Options for dielectric composition: BPSG, FSG, PSG
- Option for **Oi**, **Cs**, H in SiN, and more

FTIR - EPI thickness measurement

SiC epi thickness analysis methods

- Quickest
- One layer only
- Depends on structure

5 μm SiC epi

- FFT analysis of thickness oscillations in reflectance spectra
 - Potentially multiple (2) epi thickness (if all are > 2-3 um)

FTIR - EPI thickness measurement

SiC epi thickness analysis methods

Optical modelling

- Depending on optical structure, thickness of multiple layers
- Sufficient contrast between layers (> 5E17 at/cm³)

Total

• Model sensitive to higher dopant concentrations (dopant concentration, resistivity maps)

40

CV & Doping profiles

CnCV-230

Corona non-contact CV - CV & Doping profiles

INTERNATIONAL CONFERENCE

- Automated, production proven electrical metrology for contactless, non-contaminating measurements
- Integrated concurrent **pretreatment** for fresh epi SiC wafers
- Up to 200 mm
- 2023 development: Kinetic Corona Voltage time-resolved doping measurement mode
 - Based on charge photoneutralization time constant (T_{ph})

Applications:

- CV & Doping profiles
- QUAD defect detection full wafer mapping

Corona non-contact CV - QUAD Defect Mapping

- Detection of electrically active defects
- With increasing deposited corona charge, the defects become more visible as sites with reduced depletion voltage.
- The electrical activity of these defects is quantified by the QUAD defect contrast (difference between depletion voltage at defect center and region outside the influence of the defect).

Example QUAD map

Example QUAD map on an n-type SiC epi wafer (left) converted into a 5mm x 5mm die map with an **estimated 98% die yield** (right).

Epi and substrate defect inspection

LumiSiC & SPL

LumiSiC SiC defect inspection

BPD Glide / Half Loop

Threading Dislocations (TED/TSD)

The upcoming LumiSiC system will integrate automatic optical (AOI) and photoluminescence (PL) measurement features for SiC defect inspection.

SEMILAB

- AOI: measurement of surface defects for SiC epi and substrate (Micropipe, Triangle, Carrot, etc.)
- PL: measurement of crystal defects in SiC epi layers (BPDs, SFs, etc.)

Features

- Non-contact, non-destructive inspection technique
- High resolution full wafer imaging
- Simultaneous inspection of various surface and crystal defects
- Changeable optical filters for defect classification
- Automated multiband defect recognition and classification

500 µm

50 µm

50 µm

SiC Defect monitoring by spectral photoluminescence (SPL)

Non-visible defects: stacking faults, dislocations

9617.72

SEMILAB

Microscanning at defect sites 25 µm spatial resolution

65.75

65.25

64.00

- Laser selection based on requirement: 266 nm, 355 nm, 405 nm, 532 nm, 638 nm, 975 nm (up to five lasers)
- Laser spot size: 25-50 μm
- Spectrograph selection to cover UV to NIR (300 1650 nm). with a resolution of 0.2 - 2 nm
- fully automated spectrograph calibration (spectrograph stability)
- fully automated laser power calibration (laser stability)

Additional metrology options:

- Spectroscopic reflectometer (epi wafer thickness measurement) - parallel with PL
- Bow/warp

5453.00

Ion implant monitoring

PMR-C

PMR-C - Ion implant monitoring

25000

20000

15000

10000

Θ

0

Signal

PMR

Temperature, Al+, 300keV, 1e14

200

Θ

Temperature (° C)

Θ

600

400

SEMILAB

Pre-Anneal Ion Implant monitoring

PMR-2300C

- In-Line measurement system
- Pattern recognition
- Monitoring of product SiC and Si wafers

PMR-C key applications

- Dose monitoring
- Tilt angle
- Temperature

SINTERNATIONAL

Thank you for your attention!

